Posts

Diabetes and Omega-3’s

Diabetes, Omega-3 fatty acids Super FoodsReading, interpreting and understanding scientific literature can be tedious because the authors often find that their previous paper on the subject missed its mark or was completely wrong. Easy to do when you are blazing new trails; however, the caution they go through to cover their tracks oftentimes makes for difficult reading. Luc Djousse and his colleagues at the U of Washington reported in the May 18, 2011 edition of the American Journal of Clinical Nutrition that, “With the use of objective biomarkers, long-chain omega 3 Fatty Acids (FAs) and Alpha-Linolenic Acid (ALA) were not associated with a higher incidence of diabetes. Individuals with the highest concentrations of both types of FAs had lower risk of diabetes.”

Speed reading is absolutely out of place. Omega-3 fatty acids in the body help to control the inflammation process, which is a benefit because the start of the healing process—initiated by the omega-6 arachidonic acid—also involves the possibility of getting carried away with the exercise. Say you have a cut or abrasion. The key activity that ensues is to stop the loss of fluids – save the blood.  It is that process which tells the body to start the healing by sending white blood cells and platelets to the site of the wound and to agglomerate and close the exit door by swelling the tissues, which is also another way of looking at inflammation. To inflame can be life saving. The omega-3’s are then involved in the work of modulating the activity helping to ease the inflammation that comes with the correction process.

Fatty acids, especially those that are long and highly unsaturated, increase cell membrane fluidity and functionality. Fatty acids are essential to membrane activity at the location of hormone receptors. Insulin resistance in adult-onset diabetes is directly associated with fewer membrane enhancing long-chain fatty acids, largely due to impaired function of desaturase and elongase enzymes needed for a healthy membrane. Ruiz-Gutierrez 1993, “We have studied the fatty acid composition of erythrocyte membrane phospholipids in nine Type 1 (insulin-dependent) diabetic patients and nine healthy control subjects. Cell membranes from the diabetic patients showed a marked decrease in the total amount of polyunsaturated fatty acids mainly at the expense of docosahexaenoic acid, DHA, and arachidonic acid C20:4n6”.

Cell membrane abnormalities in lipid content are found to be related to poor metabolic control, which is a characteristic of diabetes. Diet is a very important  factor, and interventions with dietary essential fatty acids (EFAs) in the correct ratio (found to be 4:1, omega-6:omega-3), can make a difference. Decsif  T., 2002, “Reduced availability of long-chain polyunsaturates in diabetic children suggests that an enhanced dietary supply of long-chain polyunsaturates may be beneficial”. Children with diabetes demonstrate a deficit of long-chain fatty acids, so incorporating them into a child’s diet is prudent. An unspoken benefit in the application of EFA’s to diabetes treatment is the decrease in triglyceride levels, themselves striking indicators of the potential for cardiovascular issues and very often appearing in persons with diabetes.

Herein resides the prolonged physiological support of the EFAs. For those who lack the efficient conversion of the omega-3 alpha linolenic acid from plant sources (notably flaxseeds and their oil) to EPA and DHA, fish oil may be a viable alternative. In fact the the FA conversion process with diabetes is almost non-existent, but also common with aging.

For quite some time the essential fatty acids have been misunderstood. Of the types of fatty acids, the omega-3’s have received the most publicity, having been applauded for positive health effects, principally, because over the last century the general population ate little fish and had little or no n-3s in the diet. Unless they were more or less health nuts, few did not have any exposure to omega 3s as in flax, and even if they did their ability to elevate up to EPA and DHA was minimal. Fish oil was the answer but the explosion that ensued caused over-consumption and still does.

Hence the comments of Djousse et al that n-3 FAs did not increase diabetes but if both the omega 6s and the 3 s were added together there was marked improvements. There is an inference that n-3s were of no benefit and needed the balance of both EFAs, which we applaud and so should you. Balance is paramount.

References

Djoussé L, Biggs ML, Lemaitre RN, King IB, Song X, Ix JH, Mukamal KJ, Siscovick DS, Mozaffarian D. Plasma omega-3 fatty acids and incident diabetes in older adults. Am J Clin Nutr. 2011 May 18.

Ruiz-Gutierrez V, Stiefel P, Villar J, García-Donas MA, Acosta D, Carneado J.  Cell membrane fatty acid composition in type 1 (insulin-dependent) diabetic patients: relationship with sodium transport abnormalities and metabolic control.  Diabetologia. 1993 Sep;36(9):850-6.

T. Decsif, H. Minda, R. Hermann, A. Kozári, É. Erhardt, I. Burus, Sz. Molnár and Gy. Soltész  Polyunsaturated fatty acids in plasma and erythrocyte membrane lipids of diabetic children  Prostaglandins, Leukotrienes and Essential Fatty Acids. 67(4); Oct 2002: 203-210

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Soda and Obesity

type 2 diabetes, obesityWhile a major study relating soda and obesity was done in California, the hypothesis, observations and outcomes are applicable to all the states of the Union.  More than half the adolescents in that state and almost a fourth of the adults treat themselves to at least one sweetened beverage every day.  One of the concerns expressed by UCLA researchers is that the serving size has grown from an average of 6.5 ounces and eighty-eight calories in the 1950’s to 20 ounces and two hundred sixty-six calories by the 2000’s.  In fast food restaurants in 2003, the average serving was 23 ounces (almost 300 calories).  These added caloric sweeteners, including high fructose corn syrup, are not only markers of a poor diet, but also are associated with overweight and obesity in all age groups.

CITATIONS FROM REPORT / ARTICLE
The UCLA Health Policy Research Brief from September, 2009, reports from its data that, “Adults who drink soda occasionally (not every day) are 15% more likely to be overweight or obese, and adults who drink one or more sodas per day are 27% more likely to be overweight or obese than adults who do not drink soda, even when adjusting for poverty status and race/ethnicity.”  Even though the prevalence of overweight in children is lower than in adults, the rates among children have increased more.  In fact, overweight has tripled in teenagers and quadrupled in those from six to eleven years old in the last three decades.  In California the cost of obesity approaches twenty-one billion dollars a year, burdening families, employers and the health care industry.  The study comments that, “California spends more public and private money on the health consequences of obesity than any other state.”  To compound the matter, the article admits that “…drinking soda is also associated with increased risk for type 2 diabetes.”

COMMENTARY
One third of American adults are obese. Their health care costs $1500 more a year than it does for an average-weight person.  The Center for Disease Control announced in July, 2011, that obesity in the entire United States costs $147 billion a year in direct medical costs.  Dr. Thomas R. Frieden, director of the CDC, said the problem is “getting worse rapidly.  The average American is now 23 pounds overweight.”  For Medicare, the cost of obesity is 72% greater just for prescription drugs.  The CDC says that one in three children born in 2000 will develop diabetes.  How did we get there?  Diet.  Does the rest of the world share the problem?  Yes.  Where does the blame go?  White flour, white sugar, high fructose corn syrup, soft drinks and fast food.

Whether it gets marketed as corn sugar or as high fructose corn syrup, which is what it is, this commodity is not equal to other sweeteners when it comes to weight gain.  HFCS costs less than table sugar because, being liquid, it’s easier to transport and blend.  It’s sweeter than sucrose (table sugar), so less is needed, and it’s cheaper because of a combination of corn subsidies and sugar tariffs and quotas.  Cheap corn, in fact, is the building block of the fast-food nation.  Cheap corn created the chubby 20-ounce bottle of soda we have today.

High fructose corn syrup commonly is 55% fructose and 45% glucose, somewhat different from the 50-50 mix in table sugar, where one fructose molecule is attached to one glucose molecule.  Some HFCS may be as high as 80% fructose.  Since all sugars contain four calories per gram, there must be something else about fructose that matters.  Fructose is metabolized more rapidly that glucose, flooding metabolic pathways and increasing triglyceride storage.   It doesn’t spur the production of insulin or leptin, the hormone that sequesters appetite.  The body then lacks satiety.  This elevates serum triglycerides and increases fat storage.  Since it may have less impact on appetite than glucose, fructose contributes to weight gain.  Ingesting lots of fructose may also reduce insulin sensitivity.  (Beck-Nielsen, 1980)

Soft drink consumption has more than doubled in the twenty years from 1977 to 1997.  Not surprisingly, obesity followed the same trend. Cause and effect? It’s been estimated that for each additional sweet drink consumed per day, the odds of obesity increase by sixty percent.  A study of more than fifty thousand nurses by Harvard compared time periods from 1991-1995 and 1995-1999, and found that women whose soda consumption increased had bigger rises in body-mass index than those who drank less or the same amounts of soda. Fast food seems to go well with it.  Unhealthy foods get along nicely with each other.

The debate between the soft drink industry and the health nuts is ongoing.  People who consume lots of fresh-squeezed juices, vegetables and fruits are not the same group that consumes soda and cold cut sandwiches.  The daily calories from soft drinks account for almost a fourth of the recommended daily intake for many Americans, who drink almost fifty-six gallons of soda a year.

In case you’re interested, more than 30% of Americans are obese. More than 24% of Mexicans, 23% of British, 22% of Slovakians, 22% of Greeks and Australians, 21% of New Zealanders, and 15% of Czechs, but only 3% of Japanese and Koreans. Go figure. Obesity, by the way, means being more than 20% above ideal weight for height.

References

UCLA Health Policy Research Brief
September 2009
Bubbling Over: Soda Consumption and Its Link to Obesity in California
Susan H. Babey, Malia Jones, Hongjian Yu and Harold Goldstein

In California, 62% of adolescents ages 12-17 and 41% of children ages 2-11 drink at least
one soda or other sweetened beverage every day. In addition, 24% of adults drink at least
one soda or other sweetened beverage on an average day. Adults who drink soda occasionally
(not every day) are 15% more likely to be overweight or obese, and adults who drink one or
more sodas per day are 27% more likely to be overweight or obese than adults who do not
drink soda, even when adjusting for poverty status and race/ethnicity.

The prevalence of overweight and obesity has increased dramatically in both adults
and children in the last three decades in the United States. In the 1970s, about 15% of
adults were obese and by 2004 the rate had climbed to 32%.1 Although the prevalence of
overweight among children is lower than among adults, the rates among children and
adolescents have increased considerably more. The prevalence of overweight and obesity
nearly tripled among 12-19 year olds and more than quadrupled among 6-11 year olds
in the last three decades.

In California, 21% of adults are currently obese and an additional 35% are overweight. Among adolescents, 14% are obese and another 16% are overweight.2 Similar to national trends, the trend in California is toward increasing weight in both adults and adolescents.3 Each year in California, overweight and obesity cost families, employers, the health care industry and the government $21 billion.4 California spends more public and private money on the health consequences of obesity than any other state.5

Overweight and obesity are associated with serious health risks. In children and adolescents, overweight and obesity are associated with increased risk for cardiovascular disease indicators including high total cholesterol, high blood pressure, and high fasting insulin, an early indicator of diabetes risk.6 In addition, overweight children and adolescents are more likely to be overweight or obese as adults.7 In adults, overweight and obesity are associated with increased risk for diabetes, heart disease, stroke, some types of cancer and premature death.1, 8, 9

Drinking sweetened beverages such as soda and fruit drinks that have added caloric sweeteners (e.g., sucrose, high fructose corn syrup) is one marker of a poor diet, and is
associated with overweight and obesity in people of all ages.10-13 A number of studies have found that greater consumption of sweetened beverages is associated with overweight and obesity among both adults and children.12-19 In addition, randomized controlled trials that examine the impact of reducing intake of sweetened beverages on weight indicate
that reducing consumption of soda and other sweetened drinks leads to reductions in
overweight and obesity.20, 21 Among adults, drinking soda is also associated with increased risk for type 2 diabetes.13 Moreover, drinking sweetened beverages has
increased, and it is now more common than ever, particularly among adolescents.22
Between 1977 and 2002 Americans increased their calorie intake from soft drinks by
228%.23 Portion sizes have also increased from an average serving size of 6.5 fl oz (88 calories) in the 1950s, to 12 fl oz (150 calories), 20 fl oz (266 calories), and even larger portion sizes common today.24-26 The average serving size of soft drinks in fast food restaurants in 2002 was 23 fl oz (299 calories), with some chains now commonly selling soft drinks in 32 to 64 fl oz portions (416 to 832 calories, respectively).27 Sweetened beverages are a significant contributor to total caloric intake, especially for children and adolescents, and they lack the nutrients our bodies need.24, 26, 28

Additionally, eating habits established in childhood are important determinants of
eating habits as adults.29, 30
http://www.healthpolicy.ucla.edu/pubs/files/Soda%20PB%20FINAL%203-23-09.pdf

SUPPORTING ABSTRACTS
Am J Clin Nutr February 1980 vol. 33 no. 2 273-278
Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects
H Beck-Nielsen, O Pedersen and HO Lindskov

We have studied whether the sucrose-induced reduction of insulin sensitivity and cellular insulin binding in normal man is related to the fructose or the glucose moiety. Seven young healthy subjects were fed their usual diets plus 1000 kcal extra glucose per day and eight young healthy subjects were fed their usual diets with addition of 1000 kcal extra fructose per day. The dietary regimens continued for 1 week. Before change of diet there were no statistically significant differences between body weight and fasting plasma concentrations of glucose, insulin, and ketone bodies in the two groups studied. High- glucose feeding caused no significant changes in insulin binding or insulin sensitivity whereas high-fructose feeding was accompanied by a significant reduction both of insulin binding (P less than 0.05) and insulin sensitivity (P less than 0.05). The changes in insulin binding and insulin sensitivity correlated linearly (r = 0.52, P less than 0.01). We conclude that fructose seems to be responsible for the impaired insulin binding and insulin sensitivity induced by sucrose.

Medscape J Med. 2008;10(8):189. Epub 2008 Aug 12.
Soft drinks and weight gain: how strong is the link?
Wolff E, Dansinger ML.
Boston University School of Medicine, Boston, Massachusetts, USA. ewolff@mcd.org

CONTEXT
Soft drink consumption in the United States has tripled in recent decades, paralleling the dramatic increases in obesity prevalence. The purpose of this clinical review is to evaluate the extent to which current scientific evidence supports a causal link between sugar-sweetened soft drink consumption and weight gain.

EVIDENCE ACQUISITION
MEDLINE search of articles published in all languages between 1966 and December 2006 containing key words or medical subheadings, such as “soft drinks” and “weight.” Additional articles were obtained by reviewing references of retrieved articles, including a recent systematic review. All reports with cross-sectional, prospective cohort, or clinical trial data in humans were considered.

EVIDENCE SYNTHESIS
Six of 15 cross-sectional and 6 of 10 prospective cohort studies identified statistically significant associations between soft drink consumption and increased body weight. There were 5 clinical trials; the two that involved adolescents indicated that efforts to reduce sugar-sweetened soft drinks slowed weight gain. In adults, 3 small experimental studies suggested that consumption of sugar-sweetened soft drinks caused weight gain; however, no trial in adults was longer than 10 weeks or included more than 41 participants. No trial reported the effects on lipids.

CONCLUSIONS
Although observational studies support the hypothesis that sugar-sweetened soft drinks cause weight gain, a paucity of hypothesis-confirming clinical trial data has left the issue open to debate. Given the magnitude of the public health concern, larger and longer intervention trials should be considered to clarify the specific effects of sugar-sweetened soft drinks on body weight and other cardiovascular risk factors.  PMID: 18924641

Diabetes Care. 2010 Nov;33(11):2477-83. Epub 2010 Aug 6.
Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis.
Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB.

Department of Nutrition, Harvard School of Public Health, and Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA.

OBJECTIVE
Consumption of sugar-sweetened beverages (SSBs), which include soft drinks, fruit drinks, iced tea, and energy and vitamin water drinks has risen across the globe. Regular consumption of SSBs has been associated with weight gain and risk of overweight and obesity, but the role of SSBs in the development of related chronic metabolic diseases, such as metabolic syndrome and type 2 diabetes, has not been quantitatively reviewed.

RESEARCH DESIGN AND METHODS
We searched the MEDLINE database up to May 2010 for prospective cohort studies of SSB intake and risk of metabolic syndrome and type 2 diabetes. We identified 11 studies (three for metabolic syndrome and eight for type 2 diabetes) for inclusion in a random-effects meta-analysis comparing SSB intake in the highest to lowest quantiles in relation to risk of metabolic syndrome and type 2 diabetes.

RESULTS
Based on data from these studies, including 310,819 participants and 15,043 cases of type 2 diabetes, individuals in the highest quantile of SSB intake (most often 1-2 servings/day) had a 26% greater risk of developing type 2 diabetes than those in the lowest quantile (none or <1 serving/month) (relative risk [RR] 1.26 [95% CI 1.12-1.41]). Among studies evaluating metabolic syndrome, including 19,431 participants and 5,803 cases, the pooled RR was 1.20 [1.02-1.42].

CONCLUSIONS
In addition to weight gain, higher consumption of SSBs is associated with development of metabolic syndrome and type 2 diabetes. These data provide empirical evidence that intake of SSBs should be limited to reduce obesity-related risk of chronic metabolic diseases.

J Public Health Policy. 2004;25(3-4):353-66.
The obesity epidemic in the United States.
Morrill AC, Chinn CD.
Capacities Inc., Watertown, Massachusetts 02471, USA. a.morrill@capacities.org

We describe the epidemic of obesity in the United States: escalating rates of obesity in both adults and children, and why these qualify as an epidemic; disparities in overweight and obesity by race/ethnicity and sex, and the staggering health and economic consequences of obesity. Physical activity contributes to the epidemic as explained by new patterns of physical activity in adults and children. Changing patterns of food consumption, such as rising carbohydrate intake–particularly in the form of soda and other foods containing high fructose corn syrup–also contribute to obesity. We present as a central concept, the food environment–the contexts within which food choices are made–and its contribution to food consumption: the abundance and ubiquity of certain types of foods over others; limited food choices available in certain settings, such as schools; the market economy of the United States that exposes individuals to many marketing/advertising strategies. Advertising tailored to children plays an important role.  PMID: 15683071

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Do You Wash Your Produce? Why?

washing produce, e. coliIn his June 11, 2011 column for Newsmax Health (www.newsmaxhealth.com), Dr. Russell Blaylock, noted neurosurgeon and lecturer, admonished his readers to pay careful attention to the washing of their produce, especially in light of the recent outbreak of deadly E.coli in Europe, where more than 4,000 people were afflicted, and more than a few dozen died. None of us can tell where our food has been before it hit the home refrigerator. Not only E. coli, but also other strains of pathogenic bacteria can lurk in our foods. The steps we take to ensure food safety after we get it home from the store or the garden market makes all the difference in the world.

Dr. Blaylock states that, “Eating raw, contaminated food appears to be the culprit in the recent outbreak in Europe.” He cites two main reasons: the use of human waste as fertilizer and the failure of people to wash their produce before eating. He adds that the problem is rampant because, “People assume…that the government is looking out for their safety.” Although the FDA website reminds people to wash biocides off their produce, there are no public reminders of the biological menaces that might accompany those chemicals. Because kidney failure is one of the dangers of E.coli poisoning, Dr. Blaylock tells of using magnesium as a counter measure in his own case of food poisoning, keeping in mind that “magnesium protects the kidneys and can protect against vascular collapse associated with gram-negative bacteria such as E. coli.”

How many times has that lemon slice in the water your waiter brought you fallen to the floor?  How many people touched it before you got it?  Who handled it from orchard to the packing house to the grocery store to the restaurant?  Listeria, Salmonella, and E. coli could have come from any pair of dirty hands, whether organically or conventionally grown. We need the produce, but not the bacteria, pesticides and bugs that might be attached.

E. coli normally inhabits the intestines of humans and animals. There are a few different strains, but some are dangerous.  Bloody diarrhea, severe abdominal pain and vomiting are some of the symptoms of food poisoning. But some are worse. Among them is hemolytic uremic syndrome, where blood cells shrivel and die and kidneys fail to function in severe cases, usually among the old and the very young.

Washing produce is not really a big production. Start by keeping all work surfaces and cutting tools clean. Wash hands before preparing produce and meats, and always after handling animal products. Keep all fruits and vegetables away from raw meat to avoid cross-contamination.  If you wash produce too far ahead of the meal and keep it in the fridge too long, it might spoil before you get to eat it.  Foods with rinds or peels can harbor bacteria. Before you cut the cantaloupe or orange, and before you peel the banana, wash it. If you feel better about using a cleaning agent, try mixing hydrogen peroxide 50-50 with water, although 30-70 will probably suffice. In truth, those commercial preparations are no better than this, and are not much better than plain water.  Dump the outer leaves of lettuces and cabbages, and rinse the rest.  Get a salad spinner to dry leaves so the dressing will adhere.  Firm produce, like potatoes and apples, can withstand a brushing under running water.

When it comes to chemical contamination, some foods are worse than others, according to the Environmental Working Group.  The most heavily sprayed foods include apples, celery, strawberries, peaches, spinach, imported nectarines and grapes, bell peppers, potatoes, blueberries, lettuce, and kale and collards.  The least are onions, corn, pineapples, avocadoes, asparagus, peas, mangoes, eggplants, cantaloupes, kiwi, cabbages, watermelons, sweet potatoes, grapefruit, and mushrooms.

They might look gorgeous on the outside, but who knows what they’re really like…just as with people.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Hydration: How much do you need?

waterWe have been counseled to drink eight, 8-ounce glasses of water a day (8 x 8) for such a long time that the advice has become unwritten law…and slavishly followed at that. This chant started so long ago that most people have no idea of its origin. At the same time, we are cautioned not to count alcohol and coffee as hydration elements. The science behind the recommendation is so scant that little support can be given to the exhortation, yet the possession of a water bottle is ubiquitous. It is possible that this idea is the result of misinterpretation or misreading of a notion proposed by the Food and Nutrition Board of the National Research Council that recommended one milliliter of water for every calorie consumed. The neglected fact is that there is water in our food. That would surely separate liquid intake from total dietary intake.

Dr. Heinz Valtin, a medical professor at Dartmouth, examined this mantra earlier in this century, and learned, “No scientific studies were found in support of 8 x 8.”  After reviewing surveys of food and fluid intake on thousands of adults of both genders, Dr. Valtin stated that, “…such large amounts (of water) are not needed because the surveyed persons were presumably healthy and certainly not overtly ill.”  He added that most other kinds of beverages, including soft drinks and coffee, contribute to one’s daily need for hydration, continuing that a considerable body of evidence supports the premise that the human body is fully capable of maintaining proper water balance.  But all this must be tempered with the qualifier, “in healthy persons.”  He leaves us with, “…large intakes of fluid, equal to and greater than 8 x 8, are advisable for the treatment or prevention of some diseases and certainly are called for under special circumstances, such as vigorous work and exercise, especially in hot climates.”  In the spirit of open-mindedness, Dr. Valtin asks that readers submit their own findings to him.

Including the 20% supplied by foods, the Institute of Medicine recommends a fluid intake of about 91 ounces a day for women and 125 ounces for men.  Do you know how much water is in your food?  Few of us do. The puzzling thing about this recommendation is the lack of sufficient data available on water metabolism in adults, especially those who are sedentary and living in a temperate environment.  Most of us take in more than that suggested level, when we account for comestibles, although the geriatric populace is apt to take in less of both food and liquid water, partly because of insensitivity to a thirst stimulus and partly because of a waning ability to taste foods and beverages as well as they did in their early years.  It appears that older men drink less than their younger counterparts, but excrete more urine.  Differences in women have shown to be insignificant, but contribute to the notion that, “water turnover is highly variable among individuals…”  (Raman et al. 2004)

Admittedly, older adults are at greater risk for dehydration, but water balance in this population had not been faithfully studied until Purdue University picked up the reins in 2005, and compared/contrasted water intake/output and total balance of fluids in an older population (63-81 y.o.) and a younger one (23-46 y.o.), finding that, in fat-free mass, there is little difference.  The study noted, though, that fat-free mass was lower in the elderly and that fat-free hydration was significantly higher.  Considering that the elderly have less muscle to begin with, this is simple to follow.  (Bossingham. 2005)

Many people complain that, if they increase water intake, they will spend more time in the lavatory.  While this is the case with many of us, there is a limiting factor—time.  The period of time over which a specific amount of water is consumed makes a difference in when the urge to evacuate that water will arise.  The faster you drink that glass of water, the sooner you will need to excrete it.  The longer the glass lasts, the more time there will be prior to evacuation.  “A water diuresis occurs when a large volume of water is ingested rapidly.”  (Shafiee. 2005)   Also note that water mixed with a poorly absorbed sugar (not glucose) will retard absorption and delay excretion.

The kidneys can process almost four gallons of water a day.  Too much water will make you sick because sodium stores will become depleted and electrolyte activity will be sorely jeopardized.  Drinking over a period of time can thwart this threat.  You need not measure urine output to figure out how much fluid to replace.  That is something you can eyeball.  Thirst should not be the barometer by which fluid need is determined.  While there is no absolute proof that we all need 8 x 8, have a glass of water even when you are not thirsty, working in the heat, or running a marathon.  To prevent electrolyte displacement, we might consider electrolyte replacement in at least a couple of our glasses.

References

MAIN ABSTRACT
Am J Physiol Regul Integr Comp Physiol. November 2002; vol. 283 no. 5: R993-R1004
“Drink at least eight glasses of water a day.” Really? Is there scientific evidence for “8 × 8”? Heinz Valtin and (With the Technical Assistance of Sheila A. Gorman)

SUPPORTING ABSTRACTS
Am J Physiol Renal Physiol. 2004 Feb; 286(2):F394-401. Epub 2003 Nov 4.
Water turnover in 458 American adults 40-79 yr of age. Raman A, Schoeller DA, Subar AF, Troiano RP, Schatzkin A, Harris T, Bauer D, Bingham SA, Everhart JE, Newman AB, Tylavsky FA.
Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Am J Clin Nutr. 2005 Jun; 81(6):1342-50.
Water balance, hydration status, and fat-free mass hydration in younger and older adults. Bossingham MJ, Carnell NS, Campbell WW.
Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA.

Kidney Int. 2005 Feb;67(2):613-21.
Defining conditions that lead to the retention of water: the importance of the arterial sodium concentration. Shafiee MA, Charest AF, Cheema-Dhadli S, Glick DN, Napolova O, Roozbeh J, Semenova E, Sharman A, Halperin ML.

Renal Division, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada.

Am J Physiol Regul Integr Comp Physiol. 2000 Sep;279(3):R966-73.
Effects of time of day, gender, and menstrual cycle phase on the human response to a water load. Claybaugh JR, Sato AK, Crosswhite LK, Hassell LH.

Department of Clinical Investigation, Tripler Army Medical Center, Tripler Army Medical Center, Hawaii 96859 – 5000. john.claybaugh@amedd.army.mil

Eur J Clin Nutr. 2010 Feb;64(2):115-23. Epub 2009 Sep 2.
Water as an essential nutrient: the physiological basis of hydration. Jéquier E, Constant F.
Department of Physiology, University of Lausanne, Pully, Switzerland. emjequier@hispeed.ch

J Am Soc Nephrol 19: 1041-1043, 2008
Just Add Water
Dan Negoianu and Stanley Goldfarb

Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Diet Soda is Not A Free Ride

diet soda & weight gainThere is little doubt that obesity in America is on the upswing. Lots of people think that an artificially-sweetened beverage can offset the poor dietary decisions to which they have become accustomed. There has been established a relationship between non-sugar sweeteners and weight gain based on physiological responses to the message of satiety and the perceived need to consume more calories to achieve it. While the perception of sweet taste is supposed to satisfy appetite, the calculated deception to the body just might boomerang and call off all bets.

In the San Antonio Heart Study that ran from 1979 to 1988, researchers examined the association of artificially sweetened beverages with long-term weight gain, and found that, “A significant positive dose-response relationship emerged between baseline ASB (artificially sweetened beverage) consumption and all outcome measures…”  These outcome measures included overweight / obesity, weight gain, and changes in body mass index (BMI).  As with most nutrition research, considerations were made for demographics and behavioral characteristics.  Drinking more than twenty-one ASB’s a week had the most impact, with “…almost double risk of overweight / obesity among 1,250 baseline normal-weight individuals.”  For those with a body mass index already elevated, the changes were more pronounced.  This report concluded with, “These findings raise the question whether AS (artificial sweetener) use might be fueling—rather than fighting—our escalating obesity epidemic.”

That last sentence from the San Antonio Heart Study is quite the incrimination, would you say?
Diet soft drinks have long been thought to be healthier alternatives to their sugary counterparts, but reports like this one have linked increased incidence of weight gain, metabolic syndrome, and even diabetes to frequent intake of diet soft drinks.  Keep in mind, though, that all studies in all areas of health care are subject to scrutiny and critique.    Regardless of the topic, there are always two—or more—sides.  But here it may have been discovered that fooling the body is the instigator behind the concern.

When the body is told that something sweet has been ingested, it launches the production of insulin to carry the sweet to the cells to be burned for energy.  By the time the body finds out that there really is no sugar to be burned—in the form of glucose—the insulin has already been sent on its way to work.  Now the insulin has to find something to do, so it initiates a signal that says, “Feed me.  I need to carry glucose.”  That arouses hunger.  What do we grab for immediate satisfaction?  Carbohydrates, the simpler, the better.  Most of them spike glucose rapidly, which, if it fails to get burned for energy, is stored as fat.  It now appears that a lack of exercise becomes part of the equation.

There’s another tack to look at.  Some artificial sweeteners are alleged to block the brain’s production of serotonin, the neurotransmitter that controls mood, learning, sleep, and…appetite.  When the body experiences low levels of serotonin—and that can affect depressed mood—it seeks foods that can bring the levels back up.   Those foods happen to be the ones that will also bring the belt size up. Real sugar, of course, provides empty calories that can also cause weight gain as excessive energy intake.  But a weight conscious public does what it thinks is right.

Sweet taste enhances appetite.  Aspartame-sweetened water, for example, increased subjective hunger ratings when compared to glucose-sweetened water.  (Yang. 2010)  Other artificial sweeteners were associated with heightened motivation to eat, with more items selected on a food preference list. (Blundell. 1986)  This suggests that the calories in natural sweeteners trigger a response to keep overall energy intake constant, and that inconsistent coupling between sweet taste and actual caloric content can lead to compensatory overeating and consequential positive energy balance.  (This means that more energy came into the body than went out.)  People associate taste with calorie content.  You can tell that a crème brulee has more calories than the eggs from which it is made, but you’d probably eat more of it if made with artificial sweetener than with cane sugar.

Humans have a hedonic component.  We like those things that appeal to the senses and activate our food reward pathways.  That contributes to appetite increase.  But artificial sweeteners fail to provide completeness.  Unsweetening the American diet over the long haul, a little at a time, might just do the trick.  After all, it seems to work with salt.

References

MAIN ABSTRACT
Obesity (2008) 16(8), 1894–1900.
Fueling the Obesity Epidemic? Artificially Sweetened Beverage Use and Long-term Weight Gain Sharon P. Fowler, Ken Williams, Roy G. Resendez, Kelly J. Hunt, Helen P. Hazuda and Michael P. Stern

SUPPORTING ABSTRACTS
Diabetes Care. 2009 Apr;32(4):688-94. Epub 2009 Jan 16.
Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR Jr.
SourceDivision of Epidemiology, University of Texas Health Sciences Center, Houston, Texas, USA. jennifer.a.nettleton@uth.tmc.edu

Physiol Behav. 2010 Apr 26;100(1):55-62. Epub 2010 Jan 6.
High-intensity sweeteners and energy balance.
Swithers SE, Martin AA, Davidson TL.

SourceDepartment of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States. swithers@purdue.edu

Yale J Biol Med. 2010 June; 83(2): 101–108.
Gain weight by “going diet?” Artificial sweeteners and the neurobiology of sugar cravings
Neuroscience 2010
Qing Yang

The Lancet, Volume 327, Issue 8489, 10 May 1986, Pages 1092-1093
PARADOXICAL EFFECTS OF AN INTENSE SWEETENER (ASPARTAME) ON APPETITE J. E. Blundell, A. J. Hill

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Salt May Not Be As Bad As They Say…Or Is It?

regulate salt intakeUsing a sufficiently large set of data, the Cochrane Library, a highly respected international collaboration of evidence-based medicine reviews, was able to draw startling conclusions about the association of salt intake with high blood pressure and cardiovascular risks. After looking at almost 6,500 people, comprising several well-conducted studies, Cochrane found that, for CVD mortality and all-cause mortality in persons with normal or elevated blood pressure, there is no strong evidence for restricting salt intake.

The American Journal of Hypertension reported Cochrane’s findings in July of 2011, stating that, “Although meta-analyses of randomized controlled trials of salt reduction report a reduction in the level of blood pressure, the effect of reduced dietary salt on cardiovascular disease events remains unclear.”  However, it was also found that salt reduction “was associated with reductions in urinary salt excretion…and reductions in systolic blood pressure between 1 and 4 mm Hg.”  Additionally, relative risk did not show evidence of any effect of salt reduction on cardiovascular episodes in people with normal BP, but noted that, “salt restriction increased the risk of all-cause mortality in those with heart failure.”

The Cochrane reviewers admitted that, despite collecting more data than ever before, there is still no definitive proof that salt reduction will have beneficial effects on all-cause mortality or on the risk of cardiovascular disease.  At the same time, Katherine Jenner, campaign director of the Consensus Action on Salt and Health (CASH), disputes these findings, adding that there are no trials to account for other chronic exposures, such as smoking and being overweight, and eating too few fruits and vegetables.  She stated strongly that it would be unethical to expose humans to a long period of high salt intake merely to satisfy the curiosity of researchers.  To add to this confusion, the Cochrane leader, Rod Taylor, said that large benefits were not seen because salt reduction was sufficiently minimal as to cloud significant effects on BP and heart disease.  Huh?

Prior to the development of refrigeration, salt was necessary for the preservation of food.  Milk was made into cheese using salt, and fish was salted to keep it for long periods.  Eating as we do, many of us accumulate more salt and water than the kidneys can handle.  Some folks have genes that control cellular channels, enzymes and hormones at various places in the kidneys, conserving salt to enable adaptation to hot and dry climates.  If water and salt were scarce, as would often be the case in mankind’s early days, the kidney would conserve salt to hold the water that would become sweat, which would evaporate from the skin and cool the body enough to keep temperature stable.  Without sweat the body would overheat.  These genes that were important to early mankind never stopped doing their job, regardless of climate.  About 20% of us will continue to reabsorb salt as long as excessive amounts are ingested.  Salt retains water through osmosis.  It also promotes thirst.  Why else would there be a bowl of salty pretzels or nuts on the bar?

Excess salt keeps circulatory volume higher than it needs to be, putting extra fluid pressure on blood vessel walls.  The walls react to this stress by getting thicker and narrower, leaving less space for the fluid already cramped inside, thereby raising resistance to flow and increasing the pressure needed to get it moving.  Because the heart has to pump against greater pressure, it can grow larger, just like the skeletal muscles subjected to heavy pressure from lifting weights.  Whatever excess pressure is exerted on the kidneys causes those organs to compromise their delicate filtration system, leading to disease.

Beyond reducing blood pressure, a low sodium intake improves the dilation of the blood vessels and consequently improves heart function.  Dilation of blood vessels is considerably greater in a low-sodium environment. (Dickinson. 2009)  Systolic pressure will drop, as well.

At a time when the U.S. advocates lowering salt intake from 2,300 mg a day to 1,500 mg a day, the Europeans are happy to see their intake lowered to 5,000 mg a day.  Considering that the typical European intake seems to be around 9,000 to 12,000 mg a day, that is quite a change.  Naturally, they would see a drop in blood pressure.  (He and Burnier. 2011)  Salt sensitivity is subjective, though, and not everyone would have a BP spike because of intake.

But now there might just be way to help control salt-induced blood pressure elevation. Researchers at Loyola University, under the direction of Dr. Paul Whelton, learned that the ratio of sodium to potassium is a more important indicator of cardiovascular problems than either salt or potassium alone.  (Whelton and Cook. 2009)  Little studied, potassium is the element on the other side of the cell membrane from sodium. Most of us are potassium deficient, consuming far less than the 4,700 mg a day that is suggested. The recommended 9 to 13 servings of fruits and vegetables a day, the most reliable sources of this mineral, is uncommon in the contemporary diet.  A high sodium to potassium ratio can be predictive of future coronary episodes; a low one, the opposite.  In his study, Dr. Whelton says that 2,300 milligrams should be the maximum sodium intake a day for those less than 30 years old, half that for those who are older.

Sodium is not salt, and salt is not sodium. About 40% of salt is sodium, the remainder being chloride, the chemical of which stomach acid is made.

For some of us, salt might be off the hook. For others of us, it might be a gremlin. It can be hidden in frozen dinners, some cereals, vegetable juice, canned vegetables and soups, sauces and marinades, snacks, and condiments. Potassium, on the other hand, is friendly to all. Jing Chen and his colleagues agree. (Chen. 2008)

References

MAIN ABSTRACT
Am J Hypertens. 2011 Jul 6. doi: 10.1038/ajh.2011.115. [Epub ahead of print]
Reduced Dietary Salt for the Prevention of Cardiovascular Disease: A Meta-Analysis of Randomized Controlled Trials (Cochrane Review). Taylor RS, Ashton KE, Moxham T, Hooper L, Ebrahim S.

Cochrane Database of Systematic Reviews 2011, Issue 7.
Reduced dietary salt for the prevention of cardiovascular disease.
Taylor RS, Ashton KE, Moxham T, Hooper L, Ebrahim S.

SUPPORTING ABSTRACTS
Am J Clin Nutr February 2009 vol. 89 no. 2 485-490
Effects of a low-salt diet on flow-mediated dilatation in humans
Kacie M Dickinson, Jennifer B Keogh, Peter M Clifton

Arch Intern Med. 2008;168(16):1740-1746.
Association Between Blood Pressure Responses to the Cold Pressor Test and Dietary Sodium Intervention in a Chinese Population
Jing Chen, MD, MSc; Dongfeng Gu, MD, MSc; Cashell E. Jaquish, PhD; et al

Arch Intern Med. 2009;169(1):32-40.
Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease
The Trials of Hypertension Prevention Follow-up Study
Nancy R. Cook, ScD; Eva Obarzanek, PhD; Jeffrey A. Cutler, MD; Julie E. Buring, ScD; Kathryn M. Rexrode, MD; Shiriki K. Kumanyika, PhD; Lawrence J. Appel, MD; Paul K. Whelton, MD

Eur Heart J. 2011 Jun 23. [Epub ahead of print]
Nutrition in cardiovascular disease: salt in hypertension and heart failure.
He FJ, Burnier M, Macgregor GA.

Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Food Safety: Packed Lunch

Food Safety and Packed LunchThe featured abstract, from the respected journal, Pediatrics, explores the condition of packed lunches at a pre-school.  There is no reason to think that other school environments are any different.  Despite a parent’s best efforts at keeping a child’s lunch from spoiling and causing food-related illnesses, such incidents still occur because of inattentive food handling at school.  Malevolence is not usually a factor.

The University of Texas initiated a study into the conditions at schools that can lead to food-borne pathogenic illnesses, and found that temperature control is the prime concern.  Ninety percent of kids’ packed lunches reach unsafe zones. Even with multiple ice packs, “…the majority of lunch items…were at unsafe temperatures.”  As is the case with all health-related measures, “Education of parents and the public must be focused on methods of packing lunches that allow the food to remain in the safe temperature zone to prevent foodborne illnesses.”
(Almansour. 2011)

The “danger zone” for foods lies between 40° F. and 140° F.  Therefore, foods kept outside the “zone” are subject to the growth of pathogenic micro-organisms, whether at school, on a picnic, in the backyard, or in the kitchen.  A mantra that has been embraced long ago is that food should not be kept out of refrigeration longer than two hours.  Luncheon meats, smoked meats, and other cured comestibles are not an exception.  If the ambient temperature is higher than 90° F., the limit is one hour.  Unless the classroom has a refrigerator, this is practically impossible to do at school.  Note that the insulated bags we use to pack our kids’ lunches can rebound inside a refrigerator and prevent the cold from getting to the food.

Of course, Mom or Dad has to start with clean ingredients prepared on a clean surface, using clean hands and clean implements.  The CDC holds that only 3% of food contamination can be attributed to the farm.  The other 97% occurs between there and the kitchen.  (Alliance for Food and Farmng.  2010)  Including an ice source is imperative if you know the lunch will be kept at room temperature, such as within a middle-school locker, where teachers have found last month’s French fries after the mephitis rendered the neighboring crowd semi-conscious.  If the timing can be figured out, it’s O.K. to freeze those items that can be frozen without compromising their sensory quality.  Dressings like mayonnaise, and delicate items like tomatoes, are not in this group.  Peanut butter and jelly, and whole fruits and vegetables need not be cold.

If salad ingredients are part of the repast, especially lettuce, it’s vital that they be kept below 39° F. or so, lest they start to show a significant decline in visual quality as well as in safety.  However, even if it looks good, lettuce can harbor and encourage proliferation of E. coli, a dastardly micro-organism with a reputation worse than Blackbeard’s. By the way, this bacterium can thrive even on the pre-washed, ready-to-eat greens you bring directly home from the supermarket.  (Luo. 2010)  Wash them anyway. Plain water works, but a 50-50 mix with hydrogen peroxide can set the mind at ease. Peroxide reverts to plain water after exposure to light and air. That’s why it comes in an opaque brown bottle.

Smaller amounts of food in shallow containers are easiest to handle. You really don’t want to be sorting leftovers after they’ve been on the bus ride home.  Getting the containers back is another story.

References

Pediatrics 2011; 128; peds.2010-2885
Published online August 8, 2011 (doi: 10.1542/peds.2010-2885)
Temperature of Foods Sent by Parents of Preschool-aged Children
Fawaz D. Almansour, MS, Sara J. Sweitzer, PhD, RD, LD, Allison A. Magness, BS, Eric E. Calloway, BS, Michael R. McAllaster, BS, Cynthia R. Roberts-Gray, PhD, Deanna M. Hoelscher, PhD, RD, LD, CNS, Margaret E. Briley, PhD, RD, LD

J Food Sci. 2010 Sep;75(7):M390-7.
Effect of storage temperature and duration on the behavior of Escherichia coli O157:H7 on packaged fresh-cut salad containing romaine and iceberg lettuce.
Luo Y, He Q, McEvoy JL.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Maple Syrup – M’m! M’m! GOOD!

anti-diabetes maple-syrupAstounding as it may seem, maple syrup—real maple syrup—has been found to have anti-cancer and anti-diabetes properties. Plant researchers at the University of Rhode Island have isolated compounds from maple tree sap that are strikingly beneficial to human health. What’s more, some of these compounds are brand new, and surface only after the sap is processed into syrup.

A Science Daily report from March, 2011, announces that the University of Rhode Island medicinal plant researcher, Navindra Seeram, has discovered thirty-four new beneficial compounds in pure maple syrup to be added to the twenty he found the year before, “…five of which have never been seen in nature.” The researcher is quoted, “It’s important to note that in our laboratory research we found that several of these compounds possess anti-oxidant and anti-inflammatory properties, which have been shown to fight cancer, diabetes and bacterial illnesses.” Seeram applauds Mother Nature as the best chemist, commenting that, “…maple syrup is becoming a champion food when it comes to the number and variety of beneficial compounds found in it.” (Science Daily; Mar. 30, 2011) Seeram’s team acknowledges that inflammation is at the center of several nefarious disease, including heart disease, diabetes, certain cancers, and neurodegenerative diseases such as Alzheimer’s. The maple syrup compounds may show medicinal promise, but the scientists suggest that consumers not consume large quantities of the syrup, but to use it instead of artificial products found in the marketplace.

The scientific names of the compounds derived from maple syrup are enough to scare you away.  With thirty or more letters and numbers, these unpronounceable words sound serious.  And they are.  Among them are phenolic compounds and plant lignans, the former having anti-oxidant properties and the latter having hormonal properties.  Of these two major constituents, the phenolics are more active (Li and Seeram. 2010), and were found to be comparable to vitamin C (Li and Seeram. 2011).

Plants make certain chemicals for themselves, often to remain protected from predation or environmental damage, as may occur from heavy metal exposure via exhaust from the electric company’s smokestack, which often contains mercury.  These beneficial chemicals transfer to us when we eat those plants, where they may act as chelators besides anti-oxidants.  The more a plant is stressed, the more it produces phenolic anti-oxidants, the bioflavonoids being the best-known among them.

Real maple syrup demonstrates quite a nutritional profile compared to the fake stuff, which is primarily high-fructose corn syrup (HFCS) flavored with a synthetic ingredient.  Ounce for ounce, maple syrup has slightly fewer calories and carbohydrates than HFCS, eleven times the calcium, and more magnesium and zinc.  Plus, it tastes a whole lot better.

Two phenols in maple syrup, ethyl acetate and butanol, are able to inhibit enzymes that are relevant to Type 2 diabetes (Apostolidis. 2011), with butanol being more active.  Additionally, butanol converts to butyric acid, which plays a role in DNA transcription.  Real maple syrup is allowed to be labeled as such.  In Quebec, the largest producer of real maple syrup, the locals refer to imitation syrup as “pole syrup,” implying that it has been tapped from telephone poles.  That’s not too outlandish a comment.   In fact, a brand new compound that forms only during the processing of the sap has been named quebecol, in honor of the Province.  (Li and Seeram. J Func Food. 2011)  It is not uncommon for heat (in this case, sap boiling) to separate chemical components and then rearrange them to form something else, all mass being retained.

It had already been established that anti-oxidants reside in the leaves, bark and twigs of the maple tree, so examining the sap is a logical step.  Exposure to direct sunlight appears to enhance anti-oxidant production.  Besides Seeram, other research teams, especially from Canada, have hopped onto the maple syrup train.  Because all these scientists are headed in the same direction, why not?

References

http://www.sciencedaily.com/releases/2011/03/110330131316.htm
54 Beneficial Compounds Discovered in Pure Maple Syrup
Science Daily (Mar. 30, 2011)

J. Agric. Food Chem., 2010, 58 (22), pp 11673–11679
Maple Syrup Phytochemicals Include Lignans, Coumarins, a Stilbene, and Other Previously Unreported Antioxidant Phenolic Compounds
Liya Li and Navindra P. Seeram

J. Agric. Food Chem., 2011, 59 (14), pp 7708–7716
Further Investigation into Maple Syrup Yields 3 New Lignans, a New Phenylpropanoid, and 26 Other Phytochemicals
Liya Li and Navindra P. Seeram

Journal of Functional Foods. Volume 3, Issue 2, April 2011, Pages 100-106
In vitro evaluation of phenolic-enriched maple syrup extracts for inhibition of carbohydrate hydrolyzing enzymes relevant to type 2 diabetes management
Emmanouil Apostolidis, Liya Li, Chong Lee and Navindra P. Seeram

Journal of Functional Foods. Volume 3, Issue 2, April 2011, Pages 125-128
Quebecol, a novel phenolic compound isolated from Canadian maple syrup
Liya Lia and Navindra P. Seeram

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Sunflower Seeds Lower Cholesterol

plant sterols and stanolsSunflower seeds and pistachio nuts are top snacks for reducing cholesterol. Scientists have known for a long time that nuts and seeds are rich sources of phytosterols, plant compounds that are structurally related to cholesterol and may lower LDL levels. Keeping cholesterol in check may be your goal, but it’s not realistic to accomplish this without some work…as in exercise.

It’s been a few years since Science Daily first reported the news that chemists at Virginia Polytechnic Institute found the plant sterols in pistachios and sunflowers seeds to be valuable assets in the fight against rampant cholesterol numbers.  (ScienceDaily, 7 Dec. 2005. Web. 19 Aug. 2011.)  “Sesame seed and wheat germ had the highest total phytosterol content and Brazil nuts the lowest,” said scientists at VPI. (Phillips. 2005)  But these are not typically consumed as snack foods.  Sunflower seeds and pistachio nuts, on the other hand, are, and were found to be richest in these compounds.

Dietary phytosterols favorably alter cholesterol metabolism in a dose-dependent manner by reducing intestinal cholesterol absorption.  (Racette. 2010)  Even a moderate intake can be obtained from a healthy diet, without supplementation.  Of course, you have to eat the right foods.  Plants contain a large range of phytosterols, which are structural components of the cell wall.  (Plants have cell walls and cell membranes; animals just the membrane.)  What phytosterols do for plants, cholesterol does for animals.

As functional foods, plant sterols and stanols demonstrate a strong lipid-lowering effect. (Moore. 2011)  Including them as part of the diet may reduce risk for heart disease.  Studies at McGill University concentrated on patients with Type 2 diabetes and found that plant sterols had a significantly more profound effect on the cholesterol levels of Type 2 patients than on patients with high cholesterol without diabetes. (Lau. 2005)  LDL levels were lowered while the desirable HDL was relatively untouched.  Additional lipid study in Israel learned that consuming plant sterols also results in a drop in circulating insulin levels, pointing to their use as food enhancers that can reverse insulin resistance and hyperlipidemia, and possible help to control body weight.  (Ziv. 2009)

Controlling lipid levels with food or supplements is considerably more desirable than using drugs.  Suggested intake of two to three grams of these plant compounds a day, either from food, fortified foods, or supplements, can reduce lipids by almost ten percent.  (Baumgartner. 2011)  More than that affords no increased benefit.

Whether raw or roasted, sunflower seeds have a dedicated following.  Because they’re high in oil, the seeds are prone to rancidity, so refrigeration is a good idea.  They aren’t just for snacks, either.  They match pretty well with all the food groups and can really up the ante on nutrition.  Sauté them with vegetables, add them to your salads, fold them into meatloaf and mix them with baked goods and even eggs.  An ounce will give you two grams of fiber, almost half a day’s vitamin E, and a healthy ration of minerals.

References

American Chemical Society.
Sunflower Seeds, Pistachios Among Top Nuts For Lowering Cholesterol.
ScienceDaily, 7 Dec. 2005. Web. 19 Aug. 2011.

J. Agric. Food Chem., 2005, 53 (24), pp 9436–9445
Phytosterol Composition of Nuts and Seeds Commonly Consumed in the United States
Katherine M. Phillips, David M. Ruggio, and Mehdi Ashraf-Khorassani

Am J Clin Nutr January 2010 vol. 91 no. 1 32-38
Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study
Susan B Racette, Xiaobo Lin, Michael Lefevre, Catherine Anderson Spearie, Marlene M Most, Lina Ma, and Richard E Ostlund Jr

Curr Opin Endocrinol Diabetes Obes. 2011 Aug 11. [Epub ahead of print]
Functional foods and cardiovascular disease risk: building the evidence base.
Moore LL.

Am J Clin Nutr June 2005 vol. 81 no. 6 1351-1358
Plant sterols are efficacious in lowering plasma LDL and non-HDL cholesterol in hypercholesterolemic type 2 diabetic and nondiabetic persons
Vivian WY Lau, Mélanie Journoud and Peter JH Jones

Lipids Health Dis. 2009 Oct 12;8:42.
A high oleic sunflower oil fatty acid esters of plant sterols mixed with dietary diacylglycerol reduces plasma insulin and body fat accumulation in Psammomys obesus.
Ziv E, Patlas N, Kalman R, Pelled D, Herzog Y, Dror T, Cohen T.

Curr Pharm Des. 2011;17(9):922-32.
Plant sterols and stanols in the treatment of dyslipidemia: new insights into targets and mechanisms related to cardiovascular risk.
Baumgartner S, Mensink RP, Plat J.
Department of Human Biology, School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Plate and Weight

portion controlPortion control and super-sized everything have taken their toll on the waists of the world, especially in the United States. In every town and city you’ll find an all-you-can-eat buffet within easy driving distance. If not that, how about a diner / restaurant that piles the food so high you can’t see the person across the table? The dining establishments may be feeding the frenzy, but it is the consumers who are getting out of control. And not just when eating out. Dinner plates are larger than ever, and, being good Americans, we feel obligated to empty them.

An article in the July, 2007, edition of the Journal of the American Dietetic Association defines at least one cause of the expanding American waistline:  overeating.  The indictment that, “…portion distortion begins as early as 3 years of age” is quite the slap.  Regardless of gender or hemisphere of residence, education or employment, portion size has the same impact.  “People tend to eat more from larger-sized restaurant portions (in the general range of 30% to 50% more) and they tend to serve themselves and eat more from larger-sized packages (in the general range of 20% to 40% more).”  It really is easy to “make room for more” when your plate is filled, when, all along, you’d have been satisfied with six ounces of spaghetti instead of the ten sitting in front of you.  All of us are unable to estimate the number of calories we’ve just eaten, and it gets harder to do as the pile of food gets taller and wider.   “…even registered nurses and dietitians—are inaccurate at estimating the calories from large portions.”  (Wansink. 2007)

Bigger is better when it comes to the size of the guardian angel that accompanies you through that dark alley downtown on your way home from the late shift.  Besides that, a pile of fifties is better when bigger.  When it comes to food, though, we need to be more aware of bigger.  Early in 2001, the Centers for Disease Control noticed that 61% of Americans are overweight, an increase from the 55% of only a few years earlier.  (Peregrin. 2001)  That can’t be blamed on the food industry, whose job is to sell food, not good nutrition.

Lots of us were taught by Mom to clean our plates.  That wasn’t too much of a concern when the dinner plate was 9 inches in diameter.  Somewhere along the line, though, it grew to ten inches, then to twelve, and, in some venues, fourteen.  We have a friend who bought a farmhouse built in the 1940’s—a real beauty, too.  When his wife tried to put the dinnerware into the built-in cabinets, the plates wouldn’t fit.  They were too big.  A little nosing around found that dinner plates were less than 9 inches in diameter back then.

Since we’re unlikely to change plates at home, we can settle for smaller servings.  But the psychological factor might make us feel deprived.  Using a 10-inch plate instead of a 12-incher will save between 100 and 500 calories a day.  A pound equates to about 3500 calories, so the  math is easy.  By swapping out plates, you can lose between 0.2 and 1.0 pounds a week.  Losing weight slowly gives you ample time to get accustomed to the new regimen…and you likely will not regain what you’ve lost.

Many Americans view eating out as a treat, meant to be a full, rewarding experience.  In a group, it’s difficult to spoil it for others by ordering an appetizer as an entrée.  On the other hand, many restaurateurs disagree, saying an appetizer is perfectly acceptable as a main meal.  Although you can’t order half a meal and expect to pay half the price, you can take it home.  With home cooked meals, in lieu of buying new dinnerware, try using a salad plate.  In a little while your appetite will shrink to fit the size of the dish… and so will your belt.

References

Journal of the American Dietetic Association. Vol 107, Is 7 , Pp 1103-1106, July 2007
Portion Size Me: Downsizing Our Consumption Norms
Brian Wansink, PhD, Koert van Ittersum, PhD

Journal of the American Dietetic Association. 101(6); Jun 2001: 620
A Super-sized Problem:  Restaurant Chains Piling on the Food
Tony Peregrin

Journal of the American Dietetic Association. 103(2); Feb 2003: 231-234
Expanding portion sizes in the US marketplace: Implications for nutrition counseling
Lisa R Young, PhD, RD and Marion Nestle, PhD, MPH

Arch Intern Med. 2007 Jun 25;167(12):1277-83.
Portion control plate for weight loss in obese patients with type 2 diabetes mellitus: a controlled clinical trial.
Pedersen SD, Kang J, Kline GA.

Plate Size Might Influence Weight Gain
MELISSA CONRAD STÖPPLER, MD
http://www.medicinenet.com/script/main/art.asp?articlekey=77662

Size of a Diet Plate
Ashley Jacob, RD
http://www.livestrong.com/ARTICLE/469270-SIZE-OF-A-DIET-PLATE/

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.