Posts

Essential Fats Explained

fattyacid-sourceThe essential fatty acids (EFA’s) are just that—essential, meaning they have to come from the diet because the body can’t manufacture them. They might be used as fuel, but they are absolute components of the biological processes that make us work. Only two fatty acid families are vital to humans, omega-6’s and omega-3’s. It’s been shown that their ratio is more important than their volume. The parent fatty acid (FA) in the omega-6 (n-6) line is linoleic acid, abundant in many vegetable oils and ultimately responsible for the biosynthesis of arachidonic acid and related prostaglandins, which are compounds that regulate physiological activities. Alpha-linolenic acid (ALA) is the mother omega-3 (n-3) fatty acid, commonly extracted from seed oils such as flaxseed and hemp, but also found in walnuts. Nearly every aspect of human physiology is affected by essential fats, receptors for which are located in practically every cell.

The n-6 fatty acids have been denigrated in recent years because their excess has been linked to several metabolic upsets. Unbalanced diets are harmful to health, and the n-6’s that overpopulate processed foods and rancid supermarket oils have contributed to myriad health woes. What possibly started out as a 1 to 1 or 2 to 1 ratio of n-6 fatty acids to n-3 fatty acids in the human diet eons ago has become a physiological disaster of imbalance, where the ratio exceeds 10 to 1 in the typical Western diet, and may even approach 20 to 1, or worse, in personal food intake. All fatty acids go through a process of desaturation and elongation to become eminently bioactive compounds. The ultimate products of the process are beneficial to human health, especially if they are made step-by-step by the body and not forced upon it through manufactured meals, unnaturally finished meat products, stale/oxidized vegetable oils, and fossilized eggs, not to mention horrific snack foods. In a healthy body, linoleic acid is converted to gamma-linolenic acid (GLA), which becomes arachidonic acid, from which come the chemicals that control inflammation. After adulthood, the body’s ability to make those conversions is uncertain, so starting with GLA gives us a head start. However, mother linoleic acid is anti-inflammatory in its own right and even a marginal conversion to GLA has been held effective in the management of conditions as diverse as rheumatoid arthritis, eczema and ADD/ADHD.

The n-3 parent, ALA, also must come from diet because humans lack the enzymes necessary to convert it from other fats. But it’s the downstream omega-3’s that get the publicity:  EPA and DHA. Like the n-6’s, the conversion of ALA to EPA and later to DHA is an uncertain proposition in adulthood, which is why most adults use fish oil, a source of pre-made fatty acids. Even in the absence of the requisite conversion co-factors (vitamin B6, Mg, biotin, vitamin B3, vitamin C and Zn), ALA is anti-inflammatory and cardiac friendly (Pan, 2012) (Vedtofte, 2012), with recent scrutiny heralding its potential to inhibit progression of atherosclerosis (Bassett, 2011). The most readily available source of ALA is flaxseed, although chia, the newest kid on the block, is entering the marketplace.

Signs of fatty acid deficiency include a dry scaly rash, impoverished growth in youngsters, increased susceptibility to infections and poor wound healing, but are uncommon. The enzymes that convert the parent fatty acids act preferentially toward the n-3’s. By the time these enzymes deal with the omega-3 fats, some of the omega-6’s have been used for energy, hence the need to get more 6’s than 3’s, in a ratio of about 4 to 1, as evidenced by intensive research done in the 1990’s and early-mid 2000’s (Yahuda, 1993, 1996) (Simopoulos, 2002, 2008). But this ratio is based on the body’s own manufacture of the downstream fatty acids, GLA and arachidonic acid (ARA) along the n-6 line (the latter now included in products designed for infants to insure proper brain development) and EPA/DHA down the n-3 line. Deficiency of essential fatty acids sometimes strikes those suffering from cystic fibrosis or fat malabsorption issues. If patients receive total parenteral nutrition without the inclusion of EFA’s, deficit will appear in about a week or two.

The dry weight of the brain is about 80% lipids, the highest of any organ. The long-chain polyunsaturated fats, especially the n-6 and n-3, are crucial in modulating neural function. They occupy as much as 30% of the brain’s dry weight, making their influence on neural membrane dynamics profound. The shift away from EFA’s in the Western—typically American—diet parallels a rise in mental disorders. The need to address EFA supplementation is real and current, with the inclusion of omega-6 fats a necessity, since GLA, the downstream scion of linoleic acid, has held its own in mental health studies (Vaddadi, 2006). Together, the n-6’s and n-3’s cooperate in a number of cellular functions that affect membrane fluidity, allowing the passage of food and energy into the cell and wastes out. Arachidonic acid is a precursor to signaling molecules in the brain and is a key inflammatory intermediate, while EPA and DHA work to support the cardiovascular system, and the brain and retina.

It is arachidonic acid that supports membrane fluidity in the hippocampus, the part of the brain that directs memory, spatial relations and inhibition (Fukaya, 2007). It is arachidonic acid that protects the brain against oxidative stress and activates proteins in charge of the growth and repair of neurons (Darios, 2006). There is conjecture that ARA supplementation during the early stages of Alzheimer’s disease may slow its progress and stave off symptoms (Schaeffer, 2009). That’s a pretty good promise for something that’s been spurned…for lack of knowledge. Of the n-3’s, EPA may be effective in addressing depressive conditions and behavioral anomalies, besides being able to reduce inflammation (Brind, 2001) (Song, 2007). There had been some concern that EPA adversely affects clotting factors and fibrinogen concentrations, increasing the likelihood of bleeding. That is not so (Finnegan, 2003). It does, however, improve blood viscosity and red blood cell deformity, which allows red cells to adjust their shape to squeeze through narrow blood vessels, like capillaries. Downstream from EPA is DHA, a major fatty acid in sperm, brain phospholipids and the retina of the eye, and found to lower triglycerides. But its claim to fame is its rapid accrual in the developing brain during the third trimester of pregnancy and early postnatal period (Auestad, 2003) (Wainwright, 2000).

You can safely bet the farm that endogenous (made by the body itself) substances are more tightly regulated than exogenous. For example, the arachidonic acid your body makes from linoleic acid is more respectable than that from a haphazardly slaughtered steer, which may or may not be completely lifeless before the abattoir starts to dress it. In fear and pain, the animal releases a torrent of adrenal hormones throughout its flesh, confounding the integrity of its innate fatty acids. Endogenous fatty acids are, therefore, more wholesome.

How do we acquire the parent fatty acids?  You could buy oils that boast omega-6 and omega-3 fatty acid content from the supermarket, but it’s almost guaranteed that the balance will be too far out of whack to deliver a benefit, and the purity of the oils is possibly iffy. In fact, they might upset the apple cart. An overabundance of n-3’s can shut the immune system down for lack of guidance by the n-6 inflammation directors. On the other hand, BodyBio Balance Oil is a blend of organic, cold-pressed sunflower and flaxseed oils that are purposely geared to supply a 4 to 1 ratio of fatty acids that the body needs to initiate the cascade to longer chain fats that present vibrant physiological activity. Just the anti-inflammatory properties of the mother fatty acids, linoleic from sunflower and alpha-linolenic from flax, are enough to warrant using the oils to bolster the body’s well-being and to work out some metabolic kinks. Used to make salad dressings or to dress vegetables in place of butter, Balance Oil has the potential to set straight that which is awry, and the essential fatty acid metabolites can help to clear the brain fog on a hazy day. Cerebral lipids, especially the long-chain fatty acids, have significant direct and indirect activity on cerebral function. Not only do they affect the membranes, but also many are converted to neurally active substances. There is good evidence that mental challenges are related to EFA depletion, the supplementation of which can ameliorate the most defiant state of affairs.

References

Auestad N, Scott DT, Janowsky JS, Jacobsen C, Carroll RE, Montalto MB, Halter R, Qiu W, et al
Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age.
Pediatrics. 2003 Sep;112(3 Pt 1):e177-83.

Bassett CM, McCullough RS, Edel AL, Patenaude A, LaVallee RK, Pierce GN.
The α-linolenic acid content of flaxseed can prevent the atherogenic effects of dietary trans fat.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2220-6. doi: 10.1152/ajpheart.00958.2010. Epub 2011 Sep 30.

Caramia G.
The essential fatty acids omega-6 and omega-3: from their discovery to their use in therapy.
Minerva Pediatr. 2008 Apr;60(2):219-33.

Chang CS, Sun HL, Lii CK, Chen HW, Chen PY, Liu KL.
Gamma-Linolenic Acid Inhibits Inflammatory Responses by Regulating NF-kappaB and AP-1 Activation in Lipopolysaccharide-Induced RAW 264.7 Macrophages.
Inflammation. 2009 Oct 20.

Darios F, Davletov B.
Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3.
Nature. 2006 Apr 6;440(7085):813-7.

da Rocha CM, Kac G.
High dietary ratio of omega-6 to omega-3 polyunsaturated acids during pregnancy and prevalence of post-partum depression.
Matern Child Nutr. 2012 Jan;8(1):36-48. doi: 10.1111/j.1740-8709.2010.00256.x. Epub 2010 Jun 21.

Dupasquier CM, Dibrov E, Kneesh AL, Cheung PK, Lee KG, Alexander HK, Yeganeh BK, Moghadasian MH, Pierce GN.
Dietary flaxseed inhibits atherosclerosis in the LDL receptor-deficient mouse in part through antiproliferative and anti-inflammatory actions.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2394-402. Epub 2007 Jul 6.

Fernandes FS, de Souza AS, do Carmo Md, Boaventura GT.
Maternal intake of flaxseed-based diet (Linum usitatissimum) on hippocampus fatty acid profile: implications for growth, locomotor activity and spatial memory.
Nutrition. 2011 Oct;27(10):1040-7.

Finnegan YE, Howarth D, Minihane AM, Kew S, Miller GJ, Calder PC, Williams CM.
Plant and marine derived (n-3) polyunsaturated fatty acids do not affect blood coagulation and fibrinolytic factors in moderately hyperlipidemic humans.
J Nutr. 2003 Jul;133(7):2210-3.

Fukaya T, Gondaira T, Kashiyae Y, Kotani S, Ishikura Y, Fujikawa S, Kiso Y, Sakakibara M.
Arachidonic acid preserves hippocampal neuron membrane fluidity in senescent rats.
Neurobiol Aging. 2007 Aug;28(8):1179-86. Epub 2006 Jun 21.

C. Gómez Candela, L. M.ª Bermejo López and V. Loria Kohen
Importance of a balanced omega 6/omega 3 ratio for the maintenance of health.Nutritional recommendations
Nutr Hosp. 2011;26(2):323-329.

Ángeles Guinda, M. Carmen Dobarganes, M. Victoria Ruiz-Mendez, Manuel Mancha
Chemical and physical properties of a sunflower oil with high levels of oleic and palmitic acids
European Journal of Lipid Science and Technology. 105(3-4); Apr 2003: 130-137

BRIAN HALLAHAN, MRCPsych and MALCOLM R. GARLAND, MRCPsych
Essential fatty acids and mental health
The British Journal of Psychiatry (2005); 186: 275-277

William S. Harris, PhD, FAHA, Chair;  Dariush Mozaffarian, MD, DrPH, FAHA;  et al
Omega-6 Fatty Acids and Risk for Cardiovascular Disease
A Science Advisory From the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention
Circulation. 2009; 119: 902-907

Kakutani S, Ishikura Y, Tateishi N, Horikawa C, Tokuda H, Kontani M, Kawashima H, Sakakibara Y, Kiso Y, Shibata H, Morita I.
Supplementation of arachidonic acid-enriched oil increases arachidonic acid contents in plasma phospholipids, but does not increase their metabolites and clinical parameters in Japanese healthy elderly individuals: a randomized controlled study.
Lipids Health Dis. 2011 Dec 22;10:241.

Lands B.
Consequences of essential Fatty acids.
Nutrients. 2012 Sep;4(9):1338-57.

Eric L. LIEN, Kurt STEINER and John C. WALLINGFORD
The Proper Balance of Essential Fatty Acids for Life
Journal of Oleo Science. Vol. 50 (2001) , No. 5 399-405

Maekawa M, Takashima N, Matsumata M, Ikegami S, Kontani M, Hara Y, Kawashima H, Owada Y, Kiso Y, Yoshikawa T, Inokuchi K, Osumi N.
Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses.
PLoS One. 2009;4(4):e5085. doi: 10.1371/journal.pone.0005085. Epub 2009 Apr 8.

Osumi N.
Fatty acid signal, neurogenesis, and psychiatric disorders
Nihon Shinkei Seishin Yakurigaku Zasshi. 2010 Jun;30(3):141-8.

Pan A, Chen M, Chowdhury R, Wu JH, Sun Q, Campos H, Mozaffarian D, Hu FB.
α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis.
Am J Clin Nutr. 2012 Dec;96(6):1262-73. doi: 10.3945/ajcn.112.044040. Epub 2012 Oct 17.

Pawels EK, Volterrani D.
Fatty acid facts, Part I. Essential fatty acids as treatment for depression, or food for mood?
Drug News Perspect. 2008 Oct;21(8):446-51. doi: 10.1358/dnp.2008.21.8.1272136.

Peet M, Brind J, Ramchand CN, Shah S, Vankar GK.
Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia.
Schizophr Res. 2001 Apr 30;49(3):243-51.

Sakayori N, Maekawa M, Numayama-Tsuruta K, Katura T, Moriya T, Osumi N.
Distinctive effects of arachidonic acid and docosahexaenoic acid on neural stem /progenitor cells.
Genes Cells. 2011 Jul;16(7):778-90. doi: 10.1111/j.1365-2443.2011.01527.x. Epub 2011 Jun 13.

Sanders TA, Rana SK.
Comparison of the metabolism of linoleic and linolenic acids in the fetal rat.
Ann Nutr Metab. 1987;31(6):349-53.

Schaeffer EL, Forlenza OV, Gattaz WF.
Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease.
Psychopharmacology (Berl). 2009 Jan;202(1-3):37-51.

Simopoulos AP.
The importance of the ratio of omega-6/omega-3 essential fatty acids.
Biomed Pharmacother. 2002 Oct;56(8):365-79.

Artemis P. Simopoulos
The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases
Experimental Biology and Medicine  233:674-688 (2008)

Meharban Singh
Essential fatty acids, DHA and human brain
Indian Journal of Pediatrics. Volume 72, Number 3 / March, 2005: 239-242

Song C, Zhao S.
Omega-3 fatty acid eicosapentaenoic acid. A new treatment for psychiatric and neurodegenerative diseases: a review of clinical investigations.
Expert Opin Investig Drugs. 2007 Oct;16(10):1627-38.

Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE.
Essential fatty acids in visual and brain development.
Lipids. 2001 Sep;36(9):885-95.

Vaddadi K.
Essential fatty acids and mental illness.
Int Rev Psychiatry. 2006 Apr;18(2):81-4.

Vedtofte MS, Jakobsen MU, Lauritzen L, Heitmann BL
The role of essential fatty acids in the control of coronary heart disease.
Curr Opin Clin Nutr Metab Care. 2012 Nov;15(6):592-6.

Wainwright P.
Nutrition and behaviour: the role of n-3 fatty acids in cognitive function.
Br J Nutr. 2000 Apr;83(4):337-9.

Yehuda S, Carasso RL.
Modulation of learning, pain thresholds, and thermoregulation in the rat by preparations of free purified alpha-linolenic and linoleic acids: determination of the optimal omega 3-to-omega 6 ratio.
Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10345-9.

Yehuda S, Brandys Y, Blumenfeld A, Mostofsky DI.
Essential fatty acid preparation reduces cholesterol and fatty acids in rat cortex.
Int J Neurosci. 1996 Sep;86(3-4):249-56.

Yehuda S, Rabinovtz S, Carasso RL, Mostofsky DI.
Essential fatty acids preparation (SR-3) improves Alzheimer’s patients quality of life.
Int J Neurosci. 1996 Nov;87(3-4):141-9.

Yehuda S, Rabinovitz S, Mostofsky DI.
Essential fatty acids are mediators of brain biochemistry and cognitive functions
J Neurosci Res. 1999 Jun 15;56(6):565-70.

Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI.
The role of polyunsaturated fatty acids in restoring the aging neuronal membrane.
Neurobiol Aging. 2002 Sep-Oct;23(5):843-53.

Young G, Conquer J.
Omega-3 fatty acids and neuropsychiatric disorders.
Reprod Nutr Dev. 2005 Jan-Feb;45(1):1-28.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Baking With Butter (And Other Fats)

baking-with-butterDo you remember, “Nothin’ says lovin’ like somethin’ from the oven”?  Reportedly, Pillsbury says it best. How many brands of refrigerated dough can there be?  Regardless of what comes from the oven, we want it to taste good. Sometimes that means throwing discretion to the wind and eating stuff we otherwise would avoid. Yeah, right. We all know that limiting simple carbohydrates like white flour and sugar is healthful, but once in a while a splurge disrupts the routine. In that case, we crave “mouth,” the sensation of satisfaction that a food is expected to give. In the unwarranted war against fats that erupted in the last century, commercial baked goods were loaded with sugars—yes, more than one—in a feeble attempt to restore the mouth feel lost to the missing ingredient. The only real accomplishment was to increase the simple carbohydrates and practically force a person to eat several pieces of pastry in the quest for the satiety of mouth. Fat, it was discovered, was never the problem in one’s diet. Sugars were…and are. Regardless of all the emotional baggage we carry about fats, it’s a baker’s best friend, realizing that savory cooking is art, baking is science (there is a formula from which there is little room for straying).

We need to know how fat works in baking before we can appreciate its talents. When flour and water are mixed together, gluten is activated to make the dough elastic, and even stringy. In bread baking, gluten is a welcome guest because it helps the loaf to hold its shape after it rises. In cake baking, less gluten activity is desirable to prevent chewiness. Without sufficient gluten, the carbon dioxide from the addition of yeast would burst the pockets and the bread would flatten. After manipulating the water-flour mixture by kneading or stirring, and if all the gluten that could possibly develop is actually developed at this point, we would have a tough and chewy, flat baked item. This is where fat enters the scene, albeit little in breads.

In baking sweet goods, particularly, fat is almost always mixed with flour before water or any other liquid is added. The fat coats the particles of flour so that water can’t touch them. This means that not all the gluten will develop, making the final product tender. What happened is that the fat “shortened” the strings of gluten that develop. This is the origin of the term, “shortening.”  But wait, there’s more. Fat helps to trap air bubbles, especially at the point when sugar and fat are combined. This is how cakes rise. Of course, add a leavening agent and they rise even more. You see this when the height of the cake exceeds that of the batter first put into the pan.

Fat has more than one form: animal fats are usually solid, plant fats usually liquid. It’s really nature’s way of storing energy and is a more compact storage unit than carbohydrates or proteins, having twice the energy per gram. The key in baking is to choose a fat that is good for you and for the recipe.

Mistakenly labeled an enemy of the cardiovascular system, butter is a fair source of fat-soluble vitamins, especially vitamin A. It contains healthy fatty acids that support immunity, natural lecithin to help metabolize cholesterol, conjugated linoleic acid to fight disease, protects joints against degradation, and provides fatty acids essential to brain function (Lock, 2005) (Fallon, 2000). Less than two-thirds of butter is saturated fat. More than a fourth is monounsaturated, and only very little is polyunsaturated. American butter must be at least 80% fat; as much as 85% for European. It’s that 15% of water that makes a huge difference in butter’s performance in baked goods. Chocolate chip cookies baked with butter will be flatter and crisper than those baked with a less watery fat, such as canned vegetable shortening.

The taste of butter is its selling point. It can be mixed with other shortenings, too. In pie crusts, butter has to be kept cold when you work with it because it’s a more brittle fat than lard or vegetable shortening, and too much will melt into the flour, changing the texture.

What cows are fed makes a difference in the quality of the butter, which explains the inclination of some people to buy European, notably Irish, butter that comes from pasture-fed cows. European butter has more butterfat and less milk solids and water, yielding a more flavorful product. If anything, it’s the milk proteins that cause health concerns, not the fat. Some of the puzzlement about butter is caused by intrusion into the butter industry by… the government (Nuben, 1999).

Margarine is cheap, easy to make, labor-moderate and phony. Because it’s a trans-fat and has little character, we avoid it altogether.

Lard has a better lipid profile than you’d imagine. It has less saturated fat than butter, and more mono- and polyunsaturated fats. What it does for pie crust is gustatory delight. Even when cold, lard is comparatively soft, thus enveloping most of the flour particles and inhibiting the formation of gluten, resulting in the flakiest pie crust. What happens is that it separates the flour and water long enough for the steam to keep layers of lard and flour farther a part. If you’re interested, buy fresh lard and use it quickly because it isn’t a good keeper. You might not want to use lard in cakes because its large crystalline structure makes a sizeable grain, and we don’t want a flaky cake. Suet is the bovine counterpart of lard.

Oils, such as canola and olive, are good at shortening, but poor at trapping air bubbles, so they’re not recommended for all baked goods. It is possible to substitute one fat for another, and experimentation will help you decide on what you like. With pie crusts, whatever makes it tender also makes it less flaky. Covering the flour with fat will make the crust tender. That happens with overworking the dough, either from kneading by hand or flattening with a rolling pin. Leaving the clumps of flour and fat alone will separate the crust into layers that will come apart where the fat was. Getting a crust that is both tender and flaky is up to the baker. That is the art of the science.

Even the one or two percent change in fat content that American butter may have experienced over the years has made a change in the way baked goods come out of the oven. If you decide to experiment with combinations of fats, let us know the results. We never turn our noses at baked fruits.

References

Chris A. Nubern
American Butter Institute Market Situation & Outlook
Third Quarter 1999. Volume 2, Number 3
http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRD3319082

Sally Fallon and Mary G. Enig, PhD
Why Butter Is Better
01 January 2000
http://www.westonaprice.org/food-features/why-butter-is-better

Haug A, Sjøgren P, Hølland N, Müller H, Kjos NP, Taugbøl O, Fjerdingby N, Biong AS, Selmer-Olsen E, Harstad OM.
Effects of butter naturally enriched with conjugated linoleic acid and vaccenic acid on blood lipids and LDL particle size in growing pigs.
Lipids Health Dis. 2008 Aug 29;7:31. doi: 10.1186/1476-511X-7-31.

Kala AL, Joshi V, Gurudutt K
Effect of heating oils and fats in containers of different materials on their trans fatty acid content.
J Sci Food Agric. 2012 Aug 30;92(11):2227-33.

Lock AL, Horne CA, Bauman DE, Salter AM.
Butter naturally enriched in conjugated linoleic acid and vaccenic acid alters tissue fatty acids and improves the plasma lipoprotein profile in cholesterol-fed hamsters.
J Nutr. 2005 Aug;135(8):1934-9.

Przybylski O, Aladedunye FA.
Formation of trans fats during food preparation.
Can J Diet Pract Res. 2012 Summer;73(2):98-101.

USDA
United States Standards for Grades of Butter
Effective August 31, 1989
http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELDEV3004470

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Understanding the Highs and Lows of Triglycerides

Triglycerides-choiceYou have triglycerides. So do we. Sometimes a lot, sometimes not, sometimes too many. They’re formed by combining glycerol with three molecules of fatty acid, which can be the same or different. Glycerol is a sugar alcohol that provides the backbone of many lipids. It’s an important intermediate in carbohydrate and fat metabolism. High levels of triglycerides have been linked to atherosclerosis and heart disease. They’re the natural molecular form that makes up virtually all fats and oils in both plants and animals. Most of us know our cholesterol levels, and we even know about the differences between HDL and LDL. But managing triglycerides (TG’s) is just as important to cardiac health. About a third of U.S. adults have borderline TG levels, between 150 and 199 milligrams per deciliter. Many of those with high TG’s are older whites who smoke, are overweight, and who get less than 150 minutes of exercise a week. Women have a lower risk than men, and blacks and Mexican Americans have even lower risks (Ford, 2009).

The body makes TG’s from carbohydrates and sends them to fat cells where they’re stored for energy. High TG levels often accompany low HDL, in a kind of lipid profile that may run in families. HDL cholesterol between 40 and 60 milligrams per deciliter, and LDL less than 100 are reasonable goals. Where TG’s store unused calories and provide energy, cholesterol is used to build cells and to make some hormones. Really high TG’s can be a sign that something else is amiss, like high blood pressure or high blood glucose. Low thyroid hormones, liver or kidney conditions, and some genetic missteps can affect how the body converts fat to energy, so TG readings will be elevated. But beta blockers taken for high blood pressure, some diuretics, steroids and birth control pills can raise TG levels, too.

Lifestyle changes are the first line of defense against high TG’s. Losing weight, cutting calories and avoiding excess sugars and refined foods are simple steps, although weight loss may initially be a challenge. It takes only a few pounds to make a difference, and light exercise and alcohol avoidance can help. But there is a supplement that can rescue high TG’s—fish oil. Of course, when Big Pharma realized this, they had to make a prescription form—Lovaza, Glaxo Smith-Kline’s omega-3 prescription. What makes it different from plain fish oil is the FDA’s blessing, which states that Lovaza is the only omega-3 medication so approved. No other fish oil product may be called a medication. The same effect, though, can be realized by taking multiple capsules of OTC product. But because one’s prescription plan pays for Lovaza, it’s cheaper for the patient…and GSK makes a ton of money.

Fish oil contains EPA and DHA, fatty acids that benefit the cardiovascular system and the eyes and brain, respectively. The fatty acids from fish oils are anti-inflammatory and anti-thrombotic; they compete successfully with substances that cause platelet aggregation and vasoconstriction. In hypertriglyceridemia, fish oil decreases the secretion of very low density lipoproteins (VLDL), increases VLDL clearance and reduces TG transport (Nestel, 2000) (Stark, 2000). It is held that fish oil can influence CVD risk factors to such an extent as to reduce risk of coronary heart disease by as much as twenty-seven percent (Stark, 2000).

Some products labeled as fish oil are not really oils at all, but rather alternate lipids known as fatty acid ethyl esters, differing from authentic fish oil triglycerides. Because free fatty acids are rapidly oxidized, the TG structure offers greater stability to the fatty acids and prevents breakdown and oxidation (Segura, 1988). Ethyl esters are derived from the reaction of free fatty acids with ethanol. Here, the glycerol backbone of the TG is removed and substituted with alcohol (Mogelson, 1984). The resulting ester allows for fractional distillation of the long-chain fatty acids at lower temperatures. At this point, the EPA and DHA can be manipulated to levels greater than those found in the fish (Saghir, 1997). Ethyl esters (EE’s) are uncommon in nature, so are not properly digested and absorbed by the body. The process can be reversed by using food grade enzymes, restoring the product to its rightful TG form with the glycerol backbone. Doing this is not common to the industry because of the cost. The fatty acid-ethanol bond is about fifty times more resistant to digestive enzymes (pancreatic lipase) as compared to the triglyceride form (Yang, 1990) (Yang, 1990). TG fish oil yields fifty percent more plasma EPA/DHA after absorption than the EE form (Beckerman, 1990) (Dyerberg, 2010). Over the long term, however, EE absorption seems to equal out after a few months’ intake (Sadovsky, 2009). It is conjectured that the slower activity of EE fish oil results in sustained inhibition of sodium and calcium channels, helping to prevent arrhythmia (Leaf, 2003) (Lavie, 2009).

There is no discernible health risk to EE fish oil, not even for a person sensitiveto alcohol. There are stories about EE being able to melt polystyrene. Alcoholand water are polar substances, having different electrical charges at oppositeends. They do not react with non-polar materials, such as Styrofoam. So, if you’veever heard that EE fish oil will dissolve a Styrofoam cup, dismiss the thought.When it comes to oxidation, though, EE will oxidize faster than the TG fish oil,making it less reliable (Song, 1997). The TG fish oil is naturally occurringand less likely to go rancid. Doubtless there are myriad studies to support andnegate the efficacy of each form, but if either one lowers your triglyceridelevels, there’s no debate.

References

Ackman RG.
The absorption of fish oils and concentrates.
Lipids 27:858-62, 1992.

Bays HE, et al.
Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications.
Expert Rev Cardiovasc Ther. 2008;  6:391-409

Bays H:
Rationale for prescription omega-3-acid ethyl ester therapy for hypertriglyceridemia: a primer for clinicians.
Drugs Today (Barc). 2008;  44:205-246

Breslow, JL.
Review: n-3 Fatty acids and cardiovascular disease.
Am J Clin Nutr. 2006;  83(s):1477s-82s

Beckermann B, Beneke M, Seitz I.
Comparative bioavailability of eicosapentaenoic acid and docasahexaenoic acid from triglycerides, free fatty acids and ethyl esters in volunteers.
Arzneimittelforschung. 1990 Jun;40(6):700-4.

Best CA, Laposata M.
Fatty acid ethyl esters: toxic non-oxidative metabolites of ethanol and markers of ethanol intake.
Front Biosci. 2003; 8: 202-17.

Breslow JL.
N-3 fatty acids and cardiovascular disease.
Am J Clin Nutr ;83(6 Suppl):1477S-1482S, 2006.

Carlier H., Bernard A, Caseli A.
Digestion and absorption of polyunsaturated fatty acids.
Reprod Nutr Dev.(1991). 31: 475-500.

J Dyerberg , P Madsen , JM Moller ,I Aardestrup ,EB Schmidt.
Bioavailability of marine n-3 fatty acid formations.
Prostaglandins Leutkot. Essent. Fatty Acids. 2010; 83 137-141.

El Boustani S, Colette C, Monnier L, Descomps B, Crastes de Paulet A, Mendy F.
Enteral absorption in man of eicosapentaenoic acid in different chemical forms.
Lipids. 1987; 10: 711-714.

Eritsland J, Arnesen H, Seljeflot I, Høstmark AT.
Long-term metabolic effects of n-3 polyunsaturated fatty acids in patients with coronary artery disease.
Am J Clin Nutr. 1995 Apr;61(4):831-6.

Fave G, Coste TC and Armand M.
Physicochemical properties of lipids: New strategies to manage fatty acid bioavailability.
Cellular and Molecular BiologyTM. 2004; 50 (7), 815-831

Finnegan YE, Minihane AM, Leigh-Firbank EC, Kew S, Meijer GW, Muggli R, Calder PC, Williams CM.
Plant- and marine-derived n-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects.
Am J Clin Nutr. 2003 Apr;77(4):783-95.

Earl S. Ford, MD, MPH; Chaoyang Li, MD, PhD; Guixiang Zhao, MD, PhD; William S. Pearson, PhD; Ali H. Mokdad, PhD
Hypertriglyceridemia and Its Pharmacologic Treatment Among US Adults FREE
Arch Intern Med. 2009;169(6):572-578.

GISSI-Prevenzione.
Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction.
Lancet 354:447-55, 1999.

Habber TS., Wilson JS, Minoti VA, Pirola RC.
Fatty acid ethyl esters increase rat pancreatic lysosomal fragility.
J. Lab. Clin. Med. 1991; 121:75-764

Hansen JB, Olsen JO, Wilsgård L, Lyngmo V, Svensson B.
Comparative effects of prolonged intake of highly purified fish oils as ethyl ester or triglyceride on lipids, homeostasis and platelet function in normolipaemic men.
Eur J Clin Nutr; 1993; ,47: 497-507.

Hansen JB, Berge RK, et al.
Lipid peroxidation of isolated chylomicrons and oxidative status in plasma after intake of highly purified eicosapentaenoic or docosahexaenoic acids.
Lipids. 1998;  33:1129-9

Harris WS, Zucker ML, Dujovne CA.
Omega-3 fatty acids in hypertriglyceridemic patients: triglycerides vs methyl esters.
Am J Clin Nutr; 1988; 48: 992-997

Ikeda I, Sasaki E, Yasunami H, Nomiyama S, Nakayama M, Sugano M, Imaizumi K, Yazawa K. Digestion and lymphatic transport of eicosapentaenoic and docosahexaenoic acids given in the form of triacylglycerol, free acid and ethyl ester in rats.
Biochim Biophys Acta. 1995; 1259: 297-304.

Krokan HE, Bjerve KS, Mørk E.
The enteral bioavailability of eicosapentaenoic acid and docosahexaenoic acid is as good from ethyl esters as from glyceryl esters in spite of lower hydrolytic rates by pancreatic lipase in vitro. Biochim Biophys Acta; 1993;  1168: 59-67.

Lambert MS, Botham KM, Mayes PA. .
Modification of the fatty acid composition of dietary oils and fats on incorporation into chylomicrons and chylomicron remnants.
Br J Nutr. 199.;76:435-45

Lange, L. G., and B. E. Sobel.
Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol.
J. Clin. Invest. 1983; 72: 724-731,1983.

Laposata EA, Lange LG.
Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse.
Science;1986; 231: 497–9.

Lavie CJ et al.
Omega-3 polyunsaturated fatty acids and cardiovascular disease.
J Am Coll Cardiol. 2009; 51:585-94

Lawson LD, Hughes BG.
Human absorption of fish oil fatty acids as triacylglycerols, free acids, or ethyl esters.
Biochem Biophys Res Commun, 1988; 52, 328-335.

Leaf A, et al.
Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils.
Circulation. 2003; 107:2646-52

Lee JH, O’Keefe JH, Lavie CJ, Marchioli R, Harris WS.
Omega-3 fatty acids for cardioprotection.
Mayo Clin Proc 83(3):324-32, 2008.

Mogelson S, Pieper SJ, Lange LG. .
Thermodynamic bases for fatty acid ethyl ester synthase catalyzed esterification of free fatty acid with ethanol and accumulation of fatty acid ethyl esters.
Biochemistry. 1984 Aug 28;23(18):4082-7.

Montori VM, Farmer A, Wollan PC, Dinneen SF.
Fish oil supplementation in type 2 diabetes: a quantitative systematic review.
Diabetes Care. 2000 Sep;23(9):1407-15.

Nestel PJ.
Fish oil and cardiovascular disease: lipids and arterial function.
Am J Clin Nutr. 2000 Jan;71(1 Suppl):228S-31S.

J Neubronner , JP Schuchardt, G Kressel, M Merkel, C von Schacky and A Hahn.
Enhanced increase of omega-3 index in response to long term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters.
Eur. J. of Clin. Nutr.(2010),1-8.

Nordøy A, Barstad L, Connor WE, Hatcher L.
Absorption of the n-3 eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides by humans.
Am J Clin Nutr. 1991;  53:1185-90.

Patti L, Maffettone A, Iovine C, Marino LD, Annuzzi G, Riccardi G, Rivellese AA.
Long-term effects of fish oil on lipoprotein subfractions and low density lipoprotein size in non-insulin-dependent diabetic patients with hypertriglyceridemia.
Atherosclerosis. 1999 Oct;146(2):361-7.

Reis GJ, et al.
Effects of two types of fish oil supplements on serum lipids and plasma phospholipid fatty acids in coronary artery disease.
Am J Cardiol 66:1171-75, 1990.

Rupp H.
Omacor (prescription omega-3-acid ethyl esters 90): From severe rhythm disorders to hypertriglyceridemia.
Adv Ther. 2009; 26:675-90,

Sadovsky R, et al.
Prescription omega-3 acid ethyl esters for the treatment of very high triglycerides.
Postgrad Med 121:145-153, 2009.

Saghir M, Werner J, Laposata M.
Rapid in vivo hydrolysis of fatty acid ethyl esters, toxic nonoxidative ethanol metabolites.
Am J Physiol. 1997; 273:G184-90.

Segura R.
Preparation of fatty acid methyl esters by direct transesterification of lipids with aluminum chloride-methanol.
J Chromatogr. 1988:;441:99-113.

Shearer GC, Savinova OV, Harris WS.
Fish oil — how does it reduce plasma triglycerides?
Biochim Biophys Acta. 2012 May;1821(5):843-51.

Song JH, Inoue Y, Miyazawa T.
Oxidative stability of docosahexaenoic acid-containing oils in the form of phospholipids, triacylglycerols, and ethyl esters.
Biosci Biotechnol Biochem.1997;  61(12):2085-8

Stark KD, Park EJ, Maines VA, Holub BJ.
Effect of a fish-oil concentrate on serum lipids in postmenopausal women receiving and not receiving hormone replacement therapy in a placebo-controlled, double-blind trial.
Am J Clin Nutr. 2000 Aug;72(2):389-94.

Szczepiorkowski, Z. RI., G. R. Dickersin, and M. Laposata.
Fatty acid ethyl esters decrease human hepatoblastoma cell proliferation and protein synthesis. GastroenteroZogy. 1995; 108: 515- 522.

Villani AM, Crotty M, Cleland LG, James MJ, Fraser RJ, Cobiac L, Miller MD.
Fish oil administration in older adults: is there potential for adverse events? A systematic review of the literature.
BMC Geriatr. 2013 May 1;13(1):41.

Visioli F, Rise P, Barassi MC, Marangoni F, Galli C.
Dietary intake of fish vs. formulations leads to higher plasma concentrations of n-3 fatty acids.
Lipids. 2003; 38: 415-418.

Werner J, Laposata M, Fernandez-del Castillo C, Saghir M, Iozzo RV, Lewandrowski KB, Warshaw AL. Pancreatic injury in rats induced by fatty acid ethyl ester, a nonoxidative metabolite of alcohol.
Gastroenterology; 1997; 113: 286–94.

Yang LY, Kuksis A, Myher JJ.
Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: a reexamination.
J Lipid Res. 1990; 31(1):137-47.

Yang LY, Kukis A, Myher JJ.
Intestinal absorption of menhaden and rapeseed and their fatty acid methyl and ethyl esters in the rat.
Biochem Cell Biol. 1990; 68:480-91

Yoshii H, Furuta T, Siga H, Moriyama S, Baba T, Maruyama K, Misawa Y, Hata N, Linko P.
Autoxidation kinetic analysis of docosahexaenoic acid ethyl ester and docosahexaenoic triglyceride with oxygen sensor.
Biosci Biotechnol Biochem. 2002; 66:749-753.

Yuan GJ, Zhou XR, Gong ZJ, Zhang P, Sun XM, Zheng SH.
Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury.
World J Gastroenterol, 2006; 12, 2375-2381.

Zuijdgeest van Leeuwen SD, et al.
Incorporation and washout of orally administered n-3 fatty acid ethyl esters in different plasma lipid fractions.
Br J Nutr. 1999; 82:481-8

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.