Posts

Hydration: How much do you need?

waterWe have been counseled to drink eight, 8-ounce glasses of water a day (8 x 8) for such a long time that the advice has become unwritten law…and slavishly followed at that. This chant started so long ago that most people have no idea of its origin. At the same time, we are cautioned not to count alcohol and coffee as hydration elements. The science behind the recommendation is so scant that little support can be given to the exhortation, yet the possession of a water bottle is ubiquitous. It is possible that this idea is the result of misinterpretation or misreading of a notion proposed by the Food and Nutrition Board of the National Research Council that recommended one milliliter of water for every calorie consumed. The neglected fact is that there is water in our food. That would surely separate liquid intake from total dietary intake.

Dr. Heinz Valtin, a medical professor at Dartmouth, examined this mantra earlier in this century, and learned, “No scientific studies were found in support of 8 x 8.”  After reviewing surveys of food and fluid intake on thousands of adults of both genders, Dr. Valtin stated that, “…such large amounts (of water) are not needed because the surveyed persons were presumably healthy and certainly not overtly ill.”  He added that most other kinds of beverages, including soft drinks and coffee, contribute to one’s daily need for hydration, continuing that a considerable body of evidence supports the premise that the human body is fully capable of maintaining proper water balance.  But all this must be tempered with the qualifier, “in healthy persons.”  He leaves us with, “…large intakes of fluid, equal to and greater than 8 x 8, are advisable for the treatment or prevention of some diseases and certainly are called for under special circumstances, such as vigorous work and exercise, especially in hot climates.”  In the spirit of open-mindedness, Dr. Valtin asks that readers submit their own findings to him.

Including the 20% supplied by foods, the Institute of Medicine recommends a fluid intake of about 91 ounces a day for women and 125 ounces for men.  Do you know how much water is in your food?  Few of us do. The puzzling thing about this recommendation is the lack of sufficient data available on water metabolism in adults, especially those who are sedentary and living in a temperate environment.  Most of us take in more than that suggested level, when we account for comestibles, although the geriatric populace is apt to take in less of both food and liquid water, partly because of insensitivity to a thirst stimulus and partly because of a waning ability to taste foods and beverages as well as they did in their early years.  It appears that older men drink less than their younger counterparts, but excrete more urine.  Differences in women have shown to be insignificant, but contribute to the notion that, “water turnover is highly variable among individuals…”  (Raman et al. 2004)

Admittedly, older adults are at greater risk for dehydration, but water balance in this population had not been faithfully studied until Purdue University picked up the reins in 2005, and compared/contrasted water intake/output and total balance of fluids in an older population (63-81 y.o.) and a younger one (23-46 y.o.), finding that, in fat-free mass, there is little difference.  The study noted, though, that fat-free mass was lower in the elderly and that fat-free hydration was significantly higher.  Considering that the elderly have less muscle to begin with, this is simple to follow.  (Bossingham. 2005)

Many people complain that, if they increase water intake, they will spend more time in the lavatory.  While this is the case with many of us, there is a limiting factor—time.  The period of time over which a specific amount of water is consumed makes a difference in when the urge to evacuate that water will arise.  The faster you drink that glass of water, the sooner you will need to excrete it.  The longer the glass lasts, the more time there will be prior to evacuation.  “A water diuresis occurs when a large volume of water is ingested rapidly.”  (Shafiee. 2005)   Also note that water mixed with a poorly absorbed sugar (not glucose) will retard absorption and delay excretion.

The kidneys can process almost four gallons of water a day.  Too much water will make you sick because sodium stores will become depleted and electrolyte activity will be sorely jeopardized.  Drinking over a period of time can thwart this threat.  You need not measure urine output to figure out how much fluid to replace.  That is something you can eyeball.  Thirst should not be the barometer by which fluid need is determined.  While there is no absolute proof that we all need 8 x 8, have a glass of water even when you are not thirsty, working in the heat, or running a marathon.  To prevent electrolyte displacement, we might consider electrolyte replacement in at least a couple of our glasses.

References

MAIN ABSTRACT
Am J Physiol Regul Integr Comp Physiol. November 2002; vol. 283 no. 5: R993-R1004
“Drink at least eight glasses of water a day.” Really? Is there scientific evidence for “8 × 8”? Heinz Valtin and (With the Technical Assistance of Sheila A. Gorman)

SUPPORTING ABSTRACTS
Am J Physiol Renal Physiol. 2004 Feb; 286(2):F394-401. Epub 2003 Nov 4.
Water turnover in 458 American adults 40-79 yr of age. Raman A, Schoeller DA, Subar AF, Troiano RP, Schatzkin A, Harris T, Bauer D, Bingham SA, Everhart JE, Newman AB, Tylavsky FA.
Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Am J Clin Nutr. 2005 Jun; 81(6):1342-50.
Water balance, hydration status, and fat-free mass hydration in younger and older adults. Bossingham MJ, Carnell NS, Campbell WW.
Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA.

Kidney Int. 2005 Feb;67(2):613-21.
Defining conditions that lead to the retention of water: the importance of the arterial sodium concentration. Shafiee MA, Charest AF, Cheema-Dhadli S, Glick DN, Napolova O, Roozbeh J, Semenova E, Sharman A, Halperin ML.

Renal Division, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada.

Am J Physiol Regul Integr Comp Physiol. 2000 Sep;279(3):R966-73.
Effects of time of day, gender, and menstrual cycle phase on the human response to a water load. Claybaugh JR, Sato AK, Crosswhite LK, Hassell LH.

Department of Clinical Investigation, Tripler Army Medical Center, Tripler Army Medical Center, Hawaii 96859 – 5000. [email protected]

Eur J Clin Nutr. 2010 Feb;64(2):115-23. Epub 2009 Sep 2.
Water as an essential nutrient: the physiological basis of hydration. Jéquier E, Constant F.
Department of Physiology, University of Lausanne, Pully, Switzerland. [email protected]

J Am Soc Nephrol 19: 1041-1043, 2008
Just Add Water
Dan Negoianu and Stanley Goldfarb

Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Who Needs Electrolytes and Why?

Many people talk about electrolytes but do you have any idea what electrolyte really is? Being among the smallest of chemicals important to a cell’s function, electrolytes are crucial to the manufacturing of energy, the maintenance of membrane stability, the movement of fluids in the body, and a few other jobs, such as contracting a muscle, like the heart.

No Sweat

You know that you’ll taste salt if you lick the back of your hand after jogging or cutting grass on a hot summer day. Sodium is one of sweat’s main ingredients, along with chloride and potassium. All three are carried to the surface of the skin by the water made in sweat glands and the salt stays after the liquid evaporates. The purpose of sweating is regulation of body temperature, which is achieved by the eccrine glands that cover much of the body. An adult can easily sweat two liters an hour (Godek, 2008), up to eight liters a day (Vukasinovic-Vesic, 2015). It’s the evaporation of the water that has the cooling effect. Some animals do not have efficient sweat glands, such as dogs that have to pant to cool down, or hogs that needs to wallow in mud or cool water.

After exercise — or other cause of heavy perspiration — it’s important to restore fluid balance, especially in hot weather when it is easy to get dehydrated. Rehydration occurs only if both water and electrolytes are replaced. The amount of electrolytes lost through sweat varies from person to person. Accurately matching beverage electrolyte intake with loss through sweat is practically impossible. If you are eating at the same time as drinking plain water, this may suffice for rehydration. Otherwise, inclusion of electrolytes is essential.

What Are They and What Do They Do?

In the body, the electrolytes include sodium, potassium, calcium, bicarbonate, magnesium, chloride, and phosphate. Not all are contained — or needed — in an electrolyte replacement beverage. Sodium, the main cation outside the cell, controls total amount of water in the body, regulates blood volume and maintains muscle and nerve function. You need at least 500 mg a day. The suggested upper level is 2300 mg, but most Americans ingest more than 3000. Chloride, also from table salt, is an anion. Found in extracellular fluids, chloride, in the company of sodium, helps to maintain proper fluid balance and pressure of the various fluid compartments.

Potassium is the major cation inside the cell, where its job is to regulate heart beat and blood pressure while balancing the other electrolytes. Because it aids in transmitting nerve impulses, potassium is necessary for muscle contractions, actually the relaxation half of the contraction. Deficiency of potassium is more common than overdose, and may arise from diarrhea or vomiting, with muscle weakness and cramping being symptoms. Intake of potassium is generally much lower than the recommended 4700 mg a day, which is not surprising in light of the deficits in food caused by insulting agricultural practices. Perhaps the most under-appreciated mineral in the nutrient armamentarium is magnesium, not only a constituent of more than three hundred biochemical reactions in the body, but also a role player in the synthesis of both DNA and RNA. As an electrolyte, magnesium supports nerve and muscle function, boosts immunity, monitors heart cadence, stabilizes blood glucose, and promotes healthy bones and teeth. With half the U.S. population deficient, Mg is the orphan nutrient that is able to prevent elevated markers of inflammation (such as CRP), hypertension (It’s called nature’s calcium channel blocker), atherosclerotic vascular disease, migraines, asthma, and colon cancer (Rosanoff, 2012). Supplementation with magnesium is uncertain because absorption is inverse to intake.

Like the others, calcium is involved in muscle contraction and the transmission of nerve messages, but also in blood clotting. Calcium tells sodium to initiate a contraction so that you can pick up a pencil or scratch your nose. In opposition, magnesium tells potassium to let the pencil go or to move your arm back down. Because the heart needs calcium for a strong beat, it will pull the mineral from bone if dietary sufficiency is missing. After calcium, phosphorus — phosphate — is the most abundant mineral in the body. This anion helps to produce energy inside the cell besides being a bone strengthener. It’s a major building block of DNA and the cell membrane. Bicarbonate keeps pH in balance and is important when muscles make lactic acid from work.

Where Can I Get the Electrolytes I Need?

There are scores of electrolyte replacements on the market and entirely too many with sugar or additives. The issue with electrolytes is, in all honesty, that they taste bitter and salty. The fact that sugar is a carbohydrate hinders the processing of a hydration drink because absorption is slowed. That’s what carbohydrates do. Sugar concentrations in many sports drinks are higher than that of body fluid, so will not be readily absorbed. Plain water passes through too fast; carb-laden drinks pass too slowly. Therefore, an electrolyte balanced drink will do the job better and faster. Sodium and potassium, after all, encourage fluid retention and help to reduce urine output.

It is common knowledge that most of us gravitate to sweetness in times of dehydration; saltiness less so. But when you need rehydration, choose the real stuff, BodyBio’s E-lyte and E-lyte Sport, two electrolyte replacements that copy the mineral balance of the body. Elyte may be used as a daily addition to the diet, and is effective to restore homeostasis in times of virus-induced gastrointestinal distress for adults and children, in electrolyte deficit from uncontrolled diabetes and even for restless leg syndrome. When sodium loss is high from exercise, chose Elyte Sport.

References

Coyle EF.
Fluid and fuel intake during exercise.
J Sports Sci. 2004 Jan;22(1):39-55.

Robert W. Kenefick, PhD and Michael N. Sawka, PhD
Hydration at the Work Site
J Am Coll Nutr. October 2007; vol. 26 no. suppl 5: 597S-603S

Meurman JH, Härkönen M, Näveri H, Koskinen J, Torkko H, Rytömaa I, Järvinen V, Turunen R.
Experimental sports drinks with minimal dental erosion effect.
Scand J Dent Res. 1990 Apr;98(2):120-8.

Noble WH, Donovan TE, Geissberger M.
Sports drinks and dental erosion.
J Calif Dent Assoc. 2011 Apr;39(4):233-8.

Sports Med. 2002;32(15):959-71.
Hydration testing of athletes.
Oppliger RA, Bartok C.

Sawka MN, Montain SJ, Latzka WA.
Hydration effects on thermoregulation and performance in the heat.
Comp Biochem Physiol A Mol Integr Physiol. 2001 Apr;128(4):679-90.

Convertino VA, Armstrong LE, Coyle EF, Mack GW, Sawka MN, Senay LC Jr, Sherman WM.
American College of Sports Medicine position stand. Exercise and fluid replacement.
Med Sci Sports Exerc. 1996 Jan;28(1):i-vii.

Rehrer NJ.
Fluid and electrolyte balance in ultra-endurance sport.
Sports Med. 2001;31(10):701-15.

Maughan RJ, Shirreffs SM.
Dehydration and rehydration in competative sport.
Scand J Med Sci Sports. 2010 Oct;20 Suppl 3:40-7

Gal Dubnov-Raza, Yair Lahavb, and Naama W. Constantinic
Non-nutrients in sports nutrition: Fluids, electrolytes, and ergogenic aids
e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism. 6(4); Aug 2011: pp. e217-e222

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Child Athletes Nutrition

children-sportsA child is not a miniature adult. His or her nutrition and hydration needs are not exactly the same, especially in sports participation.  With the growth and availability of sports opportunities, you’d think that related nutrition needs would be a concern. To the contrary, sports nutrition for youngsters receives less attention than it deserves.

“Most children and adolescents who are strongly committed to sports are not concerned about nutrition as it relates to energy balance and obesity,” states a report from a 2004 issue of Nutrition.  The interactions among nutrition, growth, and development deserve attention if a participant expects to achieve optimal performance and to avoid the injuries and problems that stem from nutritional deficiencies.   Daily fluid turnover in adult athletes has received intense study, but that for children and adolescents hasn’t.  That of adults may be two to three liters a day, but in youngsters has only been estimated at half that—and that has been based on sedentary youth.  Although “sweating capacity is typically reported to be lower in children,” there is an increase in sweat rate when adjusted for body surface area.  Besides the energy needed for normal growth and development, children athletes need to accommodate the greater expenditure from physical activity.  That can vary from one sport to another.  (Petrie. 2004).

Besides the fun, kids participate in sports to hone their skills, to experience the excitement of competition, to be part of a team, and to stay in shape, among other reasons.  But they pay little or no attention to fuel and hydration needs.  Parents and coaches, on the other hand, do.  At least they should.  Hectic schedules, availability of foods, limited time and extended days interfere with choices and timing.

Even though the number of kids playing organized sports is on the rise, fitness levels are on the decline, and are much lower than in previous decades.  This partially explains the spate of sports-related injuries.  (Cordelia. 2011).  Targeted intervention strategies include ample hydration and nutrition.  Because of maturation differences, kids need more protein to support growth, more calcium to support bone, and more attention to the prevention of hypohydration.  (Bar-Or. 2001).

Sweat helps to cool the body, and what comes out has to be replaced, otherwise performance suffers and health is at risk.  To prevent the dizziness, fatigue, nausea, and cramps that characterize dehydration, the young athlete should drink one or two cups of water or electrolyte within four hours of an event.  If no urine has been passed, or if urine is bright yellow and minimal, another 1 ½ cups is suggested within two hours of the game.  During the event, try to replace fluids as they are lost to sweat, about a cup every fifteen or twenty minutes if possible.  Plain water will do, but if the event is longer than an hour, use an electrolyte replacement.  Recovery is just as important to a preteen or teen as it is to an adult.  The best way to determine post-exercise hydration needs is to weigh the child to compute weight loss, and to replace fluid at one and a half times the volume lost to sweat.  One ounce of water (sweat) weighs one ounce, so the math is simple.  A kid’s thirst mechanism is not well-developed, so you’ll almost have to force him to drink…but do it.

The nutrients in which young athletes are most deficient include carbohydrates, calcium, vitamin B6, folate and iron, the last being especially important to girls.  Carbohydrate inadequacy leads to shortened glycogen stores and premature fatigue, especially if the game is sixty minutes or longer.  Once glycogen is gone, fat gets mobilized and the child will “bonk.”  The last thing you want is for the young athlete to burn protein for fuel. An active child will need as many as 500 to 1500 more calories a day than his inert peers.

Two to three hours before an event, give your athlete a light, carb-rich meal:  carrot sticks and a piece of cheese; a little pasta; a small sandwich.  Have him exert himself on a slightly empty stomach to avoid cramping, even fatigue.  Chips, cakes or cookies, and candy are out.  The protein your child needs will not build bulk.  That comes with age.  Normal muscle development will require as much as one and a half grams of protein for each kilogram of body weight, but need not be much more than fifteen to twenty percent of daily calorie intake.  Reduce that during the off season. Thirty percent fat in the daily intake will help to supply needed calories.  Reduce that off-season, too, lest you greet Tweedledee one morning.

The matter of iron deficiency is a particular concern for girls, especially after the onset of menarche, which can be a couple of years late for an iron-fisted ball player.  Iron-deficiency anemia is a real threat for female athletes.  Besides affecting performance and recovery, low iron stores impair immune function and may initiate other physiological problems.  Supplementation is not intended to replace food as a source of nutrients, but in the case of iron deficit, it may be recommended.  (Beard. 2000).  There’s no need for your daughter to join the 50% of the world population who are deficient in iron.  (Ahmadi. 2010).  Raw meat probably won’t help, but getting 15 mg a day from supervised supplementation will.

Youngsters are often grossly misinformed about what they need and don’t need.  Their peers and the internet are not always reliable sources of information.  Some young athletes need only a minor tweak to their diets; others need a complete overhaul.  If you feel inadequate, don’t be embarrassed.  There are dietitians and sports nutritionists who can help.

References

Petrie HJ, Stover EA, Horswill CA.
Nutritional concerns for the child and adolescent competitor.
Nutrition. 2004 Jul-Aug;20(7-8):620-31.

Cordelia W Carter, Lyle J Micheli
Training the child athlete: physical fitness, health and injury
Br J Sports Med 2011;45:880-885

Bar-Or O.
Nutritional considerations for the child athlete
Can J Appl Physiol. 2001;26 Suppl:S186-91.

Beard J, Tobin B.
Iron status and exercise.
Am J Clin Nutr. 2000 Aug;72(2 Suppl):594S-7S.

Ahmadi A, Enayatizadeh N, Akbarzadeh M, Asadi S, Tabatabaee SH.
Iron status in female athletes participating in team ball-sports.
Pak J Biol Sci. 2010 Jan 15;13(2):93-6.

Koehler K, Braun H, Achtzehn S, Hildebrand U, Predel HG, Mester J, Schänzer W.
Eur J Appl Physiol. 2011 May 19. [Epub ahead of print]
Iron status in elite young athletes: gender-dependent influences of diet and exercise.

Committee on Sports Medicine and Fitness
AMERICAN ACADEMY OF PEDIATRICS
Intensive Training and Sports Specialization in Young Athletes
Pediatrics Vol. 106 No. 1 July 1, 2000 : pp. 154 -157

Martinez LR, Haymes EM.
Substrate utilization during treadmill running in prepubertal girls and women.
Med Sci Sports Exerc. 1992 Sep;24(9):975-83.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

B Vitamins And Energy

happygirlA considerable fraction of the general population reports using one or more vitamin supplements. Reasons include fighting stress and tiredness, and improving mental function. Until recent decades, there was only modest support from the allopathic community that supplements could render any benefit.

Using questionnaires that tracked mood states, levels of perceived stress, and general health, researchers at the Brain Performance and Nutrition Center of Northumbria University, in the UK, discovered a relationship between vitamin supplement intake and overall performance as related to fatigue, mood, and feelings of well-being.  High-dose B-vitamin supplementation “…led to significant improvements in ratings…” in the vigor subscale of the subjective assessments.  (Kennedy. 2010)  Cognitive and executive function improved in parallel fashion as a result of physical reinvigoration.  The authors concluded that, “Healthy members of the general population may benefit from augmented levels of vitamins/minerals via direct dietary supplementation.”

When questioned about the rationale behind supplementation, the answer should list poor dietary choices, processed food, depleted soil, chemical fertilizers and biocides, synthetic additives, malabsorption, careless food preparation, haphazard storage and shipping, and the use of medications and alcohol.  Feel free to add a few.

Because the vitamin B complex is water-soluble and relatively delicate, it responds to whatever insults include boiling or steaming, heat, and prolonged exposure to light.  Not only that, but the complex is vulnerable to the aerosol pesticides used by the produce brokers who store foods prior to over-the-road shipping.

The B vitamins comprise a group that plays a vital role in cell metabolism.  They were once thought to be a single vitamin, but later were found to have distinct functions in the body, although they coexist in the same foods.  They received their numbers based on the order in which they were isolated.  In conjunction, the B complex is helpful to combat most symptoms and causes of conditions such as depression, stress, coronary heart disease and other cardiovascular concerns.  Working together, the B’s are able to support metabolic homeostasis, the immune system, and the nervous system, while simultaneously maintaining healthy skin, muscle tone, and promoting cell growth and division.  Neat, eh?

The water-solubility of B vitamins helps them disperse throughout the body, but also means that they need replacement every day.  Excess is excreted in urine, which explains the dark yellow-orange color that occurs after taking the supplement.  (That would be riboflavin, B2.)  One of the B group’s claims to fame is its role in the burning of carbohydrates for energy.  If this metabolic purpose is impaired, fatigue strikes, often with a vengeance.  Thiamine in particular, or one of its derivatives, is known to improve energy metabolism during physical fatigue (Nozaki.  2009), and is a reputed activator of carbohydrate processing (Masuda. 2010).

If taken as an isolated supplement, a singular B vitamin may act as a drug, even though there are few adverse reactions, with the possible exception of very high-dose pyridoxine (B6) being associated with sensory neuropathy.  (Scott. 2008)  Alcohol of any type, even the comparatively innocuous beer, will result in a net deficit of the B vitamins.

The stress that characterizes the Western lifestyle takes a physical, as well as psychological, toll.  The mood changes and testiness that follow physical exhaustion are shared with family and friends.  B-vitamin supplementation has shown itself to attenuate the causes and effects, either one at a time or together.  (Stough. 2011)  People with the lowest levels of the B vitamins in their diets usually have the poorest memories and cognitive abilities.  Those with gastric dysfunction, such as that characterized by low stomach acid or deficit of intrinsic factor, will absorb the least vitamin B12 from their foods, so are well-advised to supplement.

The interaction of the body’s chemistry is complex.  We need vitamin B2 to metabolize B6.  We need B6, B12, and folate to clear homocysteine, a marker for cardiac involvement.  But taking an isolated B vitamin without the rest of the family upsets the apple cart.  The RDA is a poor guide because it recommends only that dose of a nutrient that will prevent deficiency disease, such as beriberi or pellagra.  Meeting with a health care professional can help you to figure what’s what.

References

Kennedy DO, Veasey R, Watson A, Dodd F, Jones E, Maggini S, Haskell CF.
Effects of high-dose B vitamin complex with vitamin C and minerals on subjective mood and performance in healthy males.
Psychopharmacology (Berl). 2010 Jul;211(1):55-68.

SUPPORTING ABSTRACTS
Nozaki S, Mizuma H, Tanaka M, Jin G, Tahara T, Mizuno K, Yamato M, Okuyama K, Eguchi A, et al
Thiamine tetrahydrofurfuryl disulfide improves energy metabolism and physical performance during physical-fatigue loading in rats.
Nutr Res. 2009 Dec;29(12):867-72.

Masuda H, Matsumae H, Masuda T, Hatta H.
A thiamin derivative inhibits oxidation of exogenous glucose at rest, but not during exercise.
J Nutr Sci Vitaminol (Tokyo). 2010;56(1):9-12.

Scott K, Zeris S, Kothari MJ.
Elevated B6 levels and peripheral neuropathies.
Electromyogr Clin Neurophysiol. 2008 Jun-Jul;48(5):219-23.

Stough C, Scholey A, Lloyd J, Spong J, Myers S, Downey LA.
The effect of 90 day administration of a high dose vitamin B-complex on work stress.
Hum Psychopharmacol. 2011 Sep 8.

Bassett JK, Hodge AM, English DR, Baglietto L, Hopper JL, Giles GG, Severi G.
Dietary intake of B vitamins and methionine and risk of lung cancer.
Eur J Clin Nutr. 2011 Aug 31.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Athletes And Fuel – Feeling Fuelish?

runnerWhen it comes to fueling an athlete, there had been as many approaches as there are sports to play. Several respected bodies have merged philosophies to incorporate and publicize nutritional recommendations that can be adapted to most athletic pursuits. There is much about diet that is common sense, but the habits cultivated from family traditions just might fly in the face of that. Ethnic or regional cuisines may feature foods that upset the balance of both macro- and micro-nutrient intake. There is no doubt that the physiological needs of serious athletes have to be the first consideration in finding and combining the right fuels.

Optimal nutrition is mandatory if an athlete wants to realize his full potential during an event. Not only performance, but also recovery, is enhanced by food intake. A position paper issued jointly by the American Dietetic Association, the Dietitians of Canada, and the American College of Sports Medicine, states, “Energy and macronutrient needs, especially carbohydrate and protein, must be met during times of high physical activity to maintain body weight, replenish glycogen stores, and provide adequate protein to build and repair tissue,” continuing that, “Adequate food and fluid should be consumed before, during, and after exercise to help maintain blood glucose concentration during exercise, maximize exercise performance, and improve recovery time. Athletes should be well hydrated before exercise and drink enough fluid during and after exercise to balance fluid losses.”  (Rodriguez. 2009)

Your performance will be affected by genetics (over which you have zero control), training (over which you have total control), and diet (ditto). If you fail to consume enough energy, the body will use both fat and lean tissue as fuel. Strength and endurance will then suffer, and the immune system and endocrine glands will pay a stiff price. If you’re trying to lose weight, you still have to pay attention to energy intake. It takes calories to burn calories. This is especially true for women, who may experience amenorrhea and osteoporosis if they aren’t careful.

You can store about 400 to 600 grams of carbohydrates, or 1600 to 2400 calories’ worth. These glycogen stores can be burned in 1 ½ to 2 hours, after which fat is mobilized and you “hit the wall.”  You don’t want to get more than about 60 grams of carbohydrates (CHO) an hour while in a marathon, for example, or you might cramp, but your daily intake could be 5-7 grams per kilogram a day (about 3 grams per pound) for moderate exercise that lasts less than 1 ½ hours. For more intense exercise, like that marathon or a cycling event, that lasts more than a couple hours, you’ll need 8-12 grams of CHO a day per kilogram of body weight. Do this prior to, not during, an event. (Burke. 2011)  You might as well convert your body weight to kilograms now. Divide pounds by 2.2 and you’ll have it.

Eating before an event will enhance performance compared to fasting. Common sense says to eat lesser amounts an hour before an event than you would eat four hours ahead of a strenuous workout. Traditional wisdom says that consuming up to 1 gram of CHO per kg is fine one hour before the start; Consuming 4.5 gm/kg is O.K. four hours before. Take it easy on the fiber and fat, though, or you might experience GI distress. During practice sessions is the time to experiment with different foods to come up with effective refueling strategies that fit you.

Protein intake depends on the type and duration of exercise. 0.8 gm/kg/day is fine for the general public, but you’ll probably need more. An endurance athlete will need 1.2-1.4 gm/kg/day, while a weight lifter needs up to 1.7 gm/kg/day. More than 2.0 mg/kg can tax the kidneys and won’t make much physiological difference. It’s important to get protein right after exercise. There’s a 15 minute to 2-hour window during which muscle balance can be increased and muscle tissue can be repaired. Protein supplements are nothing more than a convenience. Besides, such supplements can become delivery systems for things you neither want nor need, like steroids and other illicit substances.

At the end of your performance you need to refill your buckets. That’s called recovery. Adding protein to your carbohydrate intake at a ratio of 3:1 or 4:1, CHO:Pro, can enhance recovery. (Ivy. 2001)  We know of a few marathoners who eat tuna sandwiches with chocolate milk. You might opt for a bowl of Cheerios and a banana, or a yogurt-fruit smoothie and pretzels. Listen to your body. You might end with steak and potatoes. Lemon meringue pie, and carrot cake, and oatmeal cookies, and…  Dream on….PSST, you can do without the sugar.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Don’t Jump To Occlusions

legcrampPeripheral artery disease (PAD) is among the most underdiagnosed, untreated and potentially deadly conditions people can face, raising the risk of heart attack and stroke. An aging population and an increase in obesity and diabetes are causing a wave of non-cardiac vascular disease, affecting as many as eight million people. Canadian cardiologists learned that five percent of the adults over fifty who were screened for PAD had it, but an astounding 80% were unaware of it. Those pains and cramps you feel in your legs when you climb the stairs or simply walk down the driveway to get the mail might be more than you think.

Only about a fourth of the over-fifty group is aware of PAD. That’s the group most likely to be affected by it. PAD can be identified by comparing blood pressure in the arm to the blood pressure in the leg. Those who have already suffered a heart attack or stroke are at the highest risk, and need to be screened at least once a year. Dr. Ross Tsuyuki, of Canada’s U. of Alberta, adds that, “The second highest priority would be people middle-aged and beyond who are at risk for heart disease and stroke, such as people with high blood pressure, diabetes and high cholesterol.”  Besides leg pain, other PAD symptoms include leg sores that are slow to heal, toe pain in the evening, and a sensation of coldness or numbness in one or both legs. Dr. Peter Hibberd contributed that, “The secret to treatment is first-line prevention by avoiding…cigarettes and reducing risk factors for vascular disease (such as lipid disorders) as much as possible as early as possible.”  (Scaglione. Newsmax Health. 2011)  (Makowsky. 2011)

Rapidly evolving vascular technologies have introduced non-invasive, cutting-edge procedures for treating PAD. Interest in screening for non-cardiac vascular disease has also grown since preventive approaches to medicine are on the upswing. One of the latest treatments, although somewhat invasive, is the use of the patient’s own stem cells to make new blood vessels to replace or to augment those choked off by plaque buildup. (Society for Interventional Radiology. 2010)

A person at risk for PAD might consider dietary interventions to help manage contributing factors. Increasing fruits and vegetables, and decreasing empty calories can help to attenuate the accumulation of arterial fat deposits. Of course, drug treatments abound. Cholesterol drugs, blood pressure drugs, blood sugar drugs, anti-blood clot drugs, and symptom-relief drugs are at your doctor’s fingertips…or pen point. On the other hand, there is a body of research to support alternative measures to address PAD, as you’ll see in a minute.

Mortality in patients with recognized coronary artery disease (CAD) and PAD is unsurprisingly high, but therapy can mitigate that. Maintenance of normal weight is an important step, and keeping the body mass index lower than 25.0 is vital, even for those who have never smoked. (Ix. 2011)  Research has shown that a greater BMI will intensify PAD symptoms as evidenced by a decline in walking velocity and performance. (McDermott. 2006)  In cases such as this, supervised exercise training and education provide significant benefits in quality of life and reduced risk for cardiovascular episodes. (Casillas. 2011)

European medicine is supportive of complementary and alternative approaches to the healing arts, so it comes as no surprise that a considerable level of research starts there. German studies have used ginkgo biloba in PAD trials that date back to the late 90’s, finding that efficacy of the herb is dose-dependent, with 240 mg a day superior to the standard dose of half that. (Schweizer. 1999)  (Li. 1998) The British agree that ginkgo is better than placebo in treating the intermittent claudication that accompanies PAD. (Pittler. 2000)    Besides ginkgo, L-arginine, the amino acid that tells blood vessels to relax via the manufacture of nitric oxide, has shown benefits in handling intermittent claudication of PAD (Boger. 1998)  Nitric oxide inhibits contractions of vascular smooth muscle and keeps the blood flowing while helping to sustain blood pressure. There is some evidence that arginine improves the management of multiple CVD indications. (Cheng. 2001)

It might be comforting to know that alternatives to drugs for PAD exist, but it is prudent to look at diet, exercise, and lifestyle before heading to the supplement aisle.

References

Donna V. Scaglione
Peripheral Artery Disease: More Than Just an Ache
www.newsmaxhealth.com/headline_health/Peripheral_Artery_Disease/2011/09/15/407320.html
Thursday, September 15, 2011 1:08 PM

Makowsky M, McMurtry MS, Elton T, Rosenthal M, Gunther M, Percy M, Wong K, Fok J, Sebastianski M, Tsuyuki R.
Prevalence and treatment patterns of lower extremity peripheral arterial disease among patients at risk in ambulatory health settings.
Can J Cardiol. 2011 May-Jun;27(3):389.e11-8.

Society for Interventional Radiology. 16 March 2010
Stem cells build new blood vessels to treat peripheral arterial disease
http://www.sirweb.org/news/newsPDF/92_stem_cells_final.pdf

Ix JH, Biggs ML, Kizer JR, Mukamal KJ, Djousse L, Zieman SJ, de Boer IH, Nelson TL, Newman AB, Criqui MH, Siscovick DS.
Association of Body Mass Index With Peripheral Arterial Disease in Older Adults: The Cardiovascular Health Study.
Am J Epidemiol. 2011 Sep 13. [Epub ahead of print]

McDermott MM, Criqui MH, Ferrucci L, Guralnik JM, Tian L, Liu K, Greenland P, Tan J, Schneider JR, Clark E, Pearce WH.
Obesity, weight change, and functional decline in peripheral arterial disease.
J Vasc Surg. 2006 Jun;43(6):1198-204.

Casillas JM, Troisgros O, Hannequin A, Gremeaux V, Ader P, Rapin A, Laurent Y.
Rehabilitation in patients with peripheral arterial disease.
Ann Phys Rehabil Med. 2011 Aug 5.

Schweizer J, Hautmann C.
Comparison of two dosages of ginkgo biloba extract EGb 761 in patients with peripheral arterial occlusive disease Fontaine’s stage IIb. A randomised, double-blind, multicentric clinical trial.
Arzneimittelforschung. 1999 Nov;49(11):900-4.

Li AL, Shi YD, Landsmann B, Schanowski-Bouvier P, Dikta G, Bauer U, Artmann GM.
Hemorheology and walking of peripheral arterial occlusive diseases patients during treatment with Ginkgo biloba extract.
Zhongguo Yao Li Xue Bao. 1998 Sep;19(5):417-21.

Pittler MH, Ernst E.
Ginkgo biloba extract for the treatment of intermittent claudication: a meta-analysis of randomized trials.
Am J Med. 2000 Mar;108(4):276-81.

Böger RH, Bode-Böger SM, Thiele W, Creutzig A, Alexander K, Frölich JC.
Restoring vascular nitric oxide formation by L-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease.
J Am Coll Cardiol. 1998 Nov;32(5):1336-44.

Cheng JW, Baldwin SN.
L-arginine in the management of cardiovascular diseases
Ann Pharmacother. 2001 Jun;35(6):755-64.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Exercise And The Common Cold

winter-runningSome things never come our way, no matter how hard we try. Wouldn’t it be really cool if you could win the trillion dollar lottery at least once? Or maybe twice? On the other hand, some things do come to us without trying, like the in-laws at holiday time, the IRS in April, and the common cold, also known as coryza. If you’re an adult—and if you’re reading this you probably are—you’ll get about two to four such viral infections a year. Your kids will get more than a half dozen. Then, again, you might be one of the fortunate few who get none. Collectively, colds, the flu and other upper respiratory infections are classed as influenza-like illnesses.

Some science people hold that viruses are not actually living things because they cannot reproduce on their own. They can’t go through cell division because they are acellular, not made of cells. That means they have to use your cellular material to make copies of themselves, and that means they have to get inside one of your cells, where they disguise themselves as part of the gang.  That’s when they start to sneak around, fooling other cells to accept them as friends, and then cloning themselves repeatedly. If your immune system is awake and on the job, it’ll recognize this fraud and take steps to halt it.  If it isn’t, you’ll get sick for as long a time as it takes to recoup your resources.

The rhinovirus is the most studied of the pathogens that cause upper respiratory infections (URI).  There are more than a hundred, and are most infectious in the first three days after the onset of symptoms. One of the things that separate a cold from the flu is that cold symptoms show up a couple of days after infection; with the flu, it’ll be sudden onset with extreme fatigue.  (Eccles. 2005)  Exposure to the cold weather has little to do with catching a cold, although it might compromise the immune system. Staying indoors and being in close proximity to other people is a more likely cause. All you have to do is to touch a doorknob turned by a sneeze-covered hand, or to breathe in the particles that already erupted from somebody’s nose or throat, and bingo, you’ve got it. Makes you want to stay home, doesn’t it?

There is not one thing on the market that can get rid of a cold. Nada. Nothing. Zip. You might be able to control symptoms, though, and for most of us, that’s enough. Vapor rubs for the chest, antihistamines for the runny nose, analgesics for physical discomfort, and chicken soup for the soul, which, by the way, might just be the last word in cold medicine. It’s kind of frustrating to find out that medical books don’t really address colds (at more than a few hundred dollars each), but that granny does. (Ibid.)

Whatever you do, don’t ask for an antibiotic. You can’t kill things that aren’t alive in the first place, but you can disrupt the whole immune system machinery and get the nasty side effects.  If you really and truly want to do something about your cold, exercise it away. Sounds goofy, especially because you don’t feel like it.

People who exercise seem to have fewer and milder colds, says a report from the Appalachian State University in North Carolina. Dr. David Nieman and colleagues collected data from more than a thousand subjects, ages 18 to 85, and tracked the number of URI’s they suffered.  Among the data were reports of the kinds and frequency of exercise, personal fitness evaluations, and dietary habits and lifestyle. It was found that those who exercised five or more days a week experienced 41% fewer days’ worth of cold symptoms. Also, colds were milder for those in better shape than for those who were sedentary. Dr. Nieman explained that exercise mobilizes the immune system at a higher rate than normal and causes immune cells to attack viruses. (Nieman. 2011)

As opposed to intense, strenuous workouts, moderate exercise reduces the number and severity of colds. Prolonged strenuous exercise opens a window for viral attack by exhausting the first responders of the immune system. Investigators at the Department of Exercise Science of the University of South Carolina learned of increased susceptibility to respiratory viral attack following exercise stress in lab animals that ran a treadmill to the point of fatigue. The animals subjected to such rigors were more likely to succumb to administered viruses than those that rested or were less taxed.  (Murphy. 2008)

When a geriatric populace was examined under the hypothesis that moderate exercise could promote resistance to upper respiratory tract infections, Polish researchers found that, not only was susceptibility to infection reduced, but also that symptoms of depression were ameliorated. In this cohort, there was a distinct negative association between physical activity and sickness.  (Kostka. 2007)

T-cells are a major source of messenger cytokines responsible for the biological effects of the immune system. They have antigen-specific receptors on their cell surfaces to allow them to identify invaders. Th1 cytokines produce the pro-inflammatory response that kills intracellular parasites and perpetuates autoimmune responses. Interferon gamma is the star player. If this gets out of hand, there can be excessive tissue damage, so there is a balancing mechanism in Th2 cytokines, which include interleukins 4, 5, and 13. These promote the IgE responses that are common to skin and mucus membranes. Interleukin 10, also a Th2, is seriously anti-inflammatory.  In the best case scenario, Th1 and Th2 will be balanced at the exact ratio needed to face an immune challenge. It was discovered at the University of Illinois that moderate exercise (pay attention to the word “moderate”) would shift immune response from the pro-inflammatory Th1 to the anti-inflammatory Th2 cytokines, thereby reducing lung pathology and influenza protein expression, thus improving survival after virus infection. (Lowder. 2006)

Current study is examining nutritional supplements as countermeasures to exercise-induced immune changes and infection risk.  Quercetin, beta-glucan, and curcumin are cited as being able to reduce the magnitude of such immune system insult and resultant risk of URI.  (Nieman.  2008)

Now we have another reason to get up from the couch and leave the remote behind.

References

Chubak J, McTiernan A, Sorensen B, Wener MH, Yasui Y, Velasquez M, Wood B, Rajan KB, Wetmore CM, Potter JD, Ulrich CM.
Moderate-intensity exercise reduces the incidence of colds among postmenopausal women.
Am J Med. 2006 Nov;119(11):937-42.

Douglas RM, Hemilä H, Chalker E, Treacy B.
Vitamin C for preventing and treating the common cold.
Cochrane Database Syst Rev. 2007 Jul 18;(3):CD000980.

Eccles R.
Understanding the symptoms of the common cold and influenza.
Lancet Infect Dis. 2005 Nov;5(11):718-25.

Friman G, Wesslén L.
Special feature for the Olympics: effects of exercise on the immune system: infections and exercise in high-performance athletes.
Immunol Cell Biol. 2000 Oct;78(5):510-22.

Kostka T, Praczko K.
Interrelationship between physical activity, symptomatology of upper respiratory tract infections, and depression in elderly people.
Gerontology. 2007;53(4):187-93. Epub 2007 Feb 21.

Lowder T, Padgett DA, Woods JA.
Moderate exercise early after influenza virus infection reduces the Th1 inflammatory response in lungs of mice.
Exerc Immunol Rev. 2006;12:97-111.

Martin SA, Pence BD, Woods JA.
Exercise and respiratory tract viral infections.
Exerc Sport Sci Rev. 2009 Oct;37(4):157-64.

Murphy EA, Davis JM, Carmichael MD, Gangemi JD, Ghaffar A, Mayer EP.
Exercise stress increases susceptibility to influenza infection.
Brain Behav Immun. 2008 Nov;22(8):1152-5. Epub 2008 Jun 21.

Nieman DC.
Immunonutrition support for athletes.
Nutr Rev. 2008 Jun;66(6):310-20.

D C Nieman, S J Stear, L M Castell, L M Burke
Nutritional supplement series
A–Z of nutritional supplements: dietary supplements, sports nutrition foods and ergogenic aids for health and performance: part 15
Br J Sports Med 2010;44:1202-1205

David C Nieman, Dru A Henson, Melanie D Austin, Wei Sha
Upper respiratory tract infection is reduced in physically fit and active adults
Br J Sports Med. 2011 Sep;45(12):987-92. Epub 2010 Nov 1.

Woods JA, Keylock KT, Lowder T, Vieira VJ, Zelkovich W, Dumich S, Colantuano K, Lyons K, Leifheit K, Cook M, Chapman-Novakofski K, McAuley E.
Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial.
J Am Geriatr Soc. 2009 Dec;57(12):2183-91.

Wright PA, Innes KE, Alton J, Bovbjerg VE, Owens JE.
A pilot study of qigong practice and upper respiratory illness in elite swimmers.
Am J Chin Med. 2011;39(3):461-75.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Shift Work and Your Health

overworked-workerRotating shifts causes difficulties because it works in opposition to the body’s normal circadian rhythms, the most influential being the sleep/wake cycle.  There is also the matter of social isolation that comes from working when everybody else is asleep, and vice-versa.  One of the complications of changing shifts is the incidence of gastrointestinal upset.  Shift workers have a notoriously high occurrence of ulcers, based partly on disruption of sleep patterns and partly on the activation of H. pylori infection if it is at all present and waiting for the opportunity to strike.  (Pietroiusti, 2006)  (Segawa, 1987)  Chronic fatigue, untimely sleepiness, and even failure to fall asleep are some other physical interruptions caused by shift work.  Among the worst social perturbations is divorce, an element that hits some jobs more than others, law enforcement being a prime example.

Canada’s Institute for Work and Health delved into this topic and found that night work is associated with an increase in breast cancer among women who work rotating shifts for long durations.  (IWH, 2010)  The etiology of breast cancer is mostly uncertain, but about one fourth its incidences can be attributed to genetic factors.  At least a little blame has been put on light at night and its effect on melatonin, the hormone produced by the pineal gland that communicates information about light to different parts of the body in order to regulate biologic rhythms.  When the eye’s pupil detects changes in brightness—night—it sends the sleep message to the brain by way of melatonin.  When this activity gets stymied, melatonin is not able to exert its anti-cancer character, and the risk of breast cancer is elevated after a prolonged time. (Schernhammer, 2001)   (Hansen, 2001)   Melatonin is a popular sleep aid, especially for those experiencing jet lag, but few have associated it with anti-cancer function.  (Knower, 2012)  An interesting realization in this circumstance is the body’s inability to manufacture vitamin D from exposure to natural light, raising the question of the appropriateness of supplementation.  (Shao, 2012)  Among researchers’ quests is the determination of the actual concentrations of vitamin D in women who have survived breast cancer and whether or not insufficiency is prevalent among sufferers, survivors, and healthy controls.  (Trukova, 2012)  (Blask, 2009)

Little is known about sleep taken at night, and even less about sleep taken during the day, when years of natural law dictate otherwise.  Nobody really knows how much sleep is necessary for optimal health.  But there is evidence that long sleepers and very short sleepers have increased mortality.  (Ferrie, 2007)  The first part of sleep lasts about fifteen minutes, and is labeled as Stage 1.  If you are awakened from this stage, you may even deny having been asleep.  Stage 2 occupies about half of sleep time, yet is the least understood part.  Being deprived of this stage results in almost total sleep loss because this is the part from which other stages develop.  This, by the way, is the stage affected by medications and sleep aids.  Stages 3 and 4 are combined into the slow-wave-sleep stage, differing only by the number of delta waves measureable by an EEG.  Contrasted to Stage 2, this is the one common to most persons, and is the one compensated after long periods of sleep deprivation.  This is the one needed for body repair and the activity of growth hormone(s).  Rapid eye movement (REM) sleep is the best known stage and throughout its duration the body is virtually paralyzed and loses its ability to regulate heat.  Dreams, which are deemed necessary to psychological well-being, occur here.  REM, dominating the late stages of sleep episodes, is strongly influenced by circadian rhythm.   Daytime sleep is normally one or two hours shorter than night time sleep.  REM, therefore, is shortened.  This adds to the alertness problems of the night shift.

A modern concern about shift work is increased risk of type 2 diabetes and the metabolic syndrome, compounded by the possible elevation of cardiovascular jeopardy.  This affects women more than men, but the combination of obesity, high triglycerides, and low HDL cholesterol is common to both.  (Karlsson, 2001)  Years of rotating night shift work are associated with weight gain that comes from failed attempts to eat right and from limited time for exercise.  And to think that all this is precipitated by disturbed circadian periodicity.  Eating on the run and mindless snacking are more common among night workers than their daytime counterparts.  Even if day and night workers had the same major CVD factors, the night workers admit to increased job strain and greater at-work physical exertion, both of which contribute to the altered parameters that incite metabolic syndrome.  (Esquirol, 2009)  In Japan, where the work ethic is ubiquitously strong, different work schedules have been associated with a rise in the incidence of diabetes.  (Morikawa, 2005)  (Suwazono, 2006)  Over the long term, changes are evident not only in daily glucose levels, but also in glycosylated hemoglobin (HbA1c), which measures glucose over an extended time.  (Suwazono, 2009)

Workplace cafeterias commonly close at night.  Workers are then left to their own culinary devices, and that often translates to unhealthy eating habits by virtue of convenience and time constraints.  A healthy work force is a boon to productivity and accident prevention, areas in which companies can demonstrate an interest that supersedes complaining about the opposite.  If a company is reactive, it can get you to the First-Aid station or to the HR person for failure to perform.  By being proactive, it can prevent both while saving money on bandages and the expense of training a replacement.

If there is a best-case scenario for shift work, scheduling a rotation that lasts at least six weeks seems to work by affording enough time to adapt one’s circadian dance to the situation.  There are those who prefer steady nights, but that breed is rare.  If we think adapting to factory work schedules is tough, we should look at those who work in the emergency room.  At least some of us have a scapegoat for tight trousers.

References

Blask DE.
Melatonin, sleep disturbance and cancer risk.
Sleep Med Rev. 2009 Aug;13(4):257-64. Epub 2008 Dec 17.

Costa G.
Shift work and breast cancer. 
G Ital Med Lav Ergon. 2010 Oct-Dec;32(4):454-7.

Esquirol Y, Bongard V, Mabile L, Jonnier B, Soulat JM, Perret B.
Shift work and metabolic syndrome: respective impacts of job strain, physical activity, and dietary rhythms.
Chronobiol Int. 2009 Apr;26(3):544-59.

Ferrie JE, Shipley MJ, Cappuccio FP, Brunner E, Miller MA, Kumari M, Marmot MG.
A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort.
Sleep. 2007 Dec;30(12):1659-66.

Ha M, Park J.
Shiftwork and metabolic risk factors of cardiovascular disease.
J Occup Health. 2005 Mar;47(2):89-95.

Hansen J.
Light at night, shiftwork, and breast cancer risk.
J Natl Cancer Inst. 2001 Oct 17;93(20):1513-5.

Institute for Work and Health (IWH)
Scientific Symposium, Toronto, 12 April, 2010
Scientific Symposium on the Health Effects of Shift Work
http://www.iwh.on.ca/shift-work-symposium

Karlsson B, Knutsson A, Lindahl B.
Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people.
Occup Environ Med. 2001 Nov;58(11):747-52.

Knower KC, To SQ, Takagi K, Miki Y, Sasano H, Simpson ER, Clyne CD.
Melatonin suppresses aromatase expression and activity in breast cancer associated fibroblasts.
Breast Cancer Res Treat. 2012 Jan 12.

Kroenke CH, Spiegelman D, Manson J, Schernhammer ES, Colditz GA, Kawachi I.
Work characteristics and incidence of type 2 diabetes in women.
Am J Epidemiol. 2007 Jan 15;165(2):175-83.

Morikawa Y, Nakagawa H, Miura K, Soyama Y, Ishizaki M, Kido T, Naruse Y, Suwazono Y, Nogawa K
Shift work and the risk of diabetes mellitus among Japanese male factory workers.
Scand J Work Environ Health. 2005 Jun;31(3):179-83.

Paul A. Schulte, PhD, Gregory R. Wagner, MD, Aleck Ostry, PhD, et al
Work, Obesity, and Occupational Safety and Health
American Journal of Public Health. Mar 2007; 97:3, 428-436

Pietroiusti A, Forlini A, Magrini A, Galante A, Coppeta L, Gemma G, Romeo E, Bergamaschi A.
Shift work increases the frequency of duodenal ulcer in H pylori infected workers.
Occup Environ Med. 2006 Nov;63(11):773-5.

Prasai MJ, George JT, Scott EM.
Molecular clocks, type 2 diabetes and cardiovascular disease.
Diab Vasc Dis Res. 2008 Jun;5(2):89-95.

Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA.
Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study.
J Natl Cancer Inst. 2001 Oct 17;93(20):1563-8.

Scott AJ.
Shift work and health.
Prim Care. 2000 Dec;27(4):1057-79.

Segawa K, Nakazawa S, Tsukamoto Y, Kurita Y, Goto H, Fukui A, Takano K.
Peptic ulcer is prevalent among shift workers.
Dig Dis Sci. 1987 May;32(5):449-53.

Shao T, Klein P, Grossbard ML.
Vitamin D and Breast Cancer.
Oncologist. 2012 Jan 10.

Suwazono Y, Sakata K, Okubo Y, Harada H, Oishi M, Kobayashi E, Uetani M, Kido T, Nogawa K.
Long-term longitudinal study on the relationship between alternating shift work and the onset of diabetes mellitus in male Japanese workers.
J Occup Environ Med. 2006 May;48(5):455-61.

Suwazono Y, Dochi M, Oishi M, Tanaka K, Kobayashi E, Sakata K.
Shiftwork and impaired glucose metabolism: a 14-year cohort study on 7104 male workers.
Chronobiol Int. 2009 Jul;26(5):926-41.

Trukova KP, Grutsch J, Lammersfeld C, Liepa G.
Prevalence of Vitamin D Insufficiency Among Breast Cancer Survivors.
Nutr Clin Pract. 2012 Jan 6.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Sleep and Weight

sleeping-manAhh, yes, that state of rest for body and soul.  It’s the time when will power and consciousness are suspended, and when body functions are mostly in neutral. Most sleep scientists agree that sleep has considerable value as a recuperative and adaptive function in humans.   Because it takes work for the body to maintain a constant temperature in an environment with temperature ranges, the eight-hour respite affords a chance to reconstitute cells and tissues.  While the body slows down, the brain, on the other hand, revs up its metabolic activity during the REM phase of sleep to get ready for the input of the next day.  Complicated stuff, for sure.

The negative consequences of too little sleep can rattle your chain with fanfare.  Falling asleep at the wheel is scary.  Falling off the pew in church is embarrassing.  Dozing during a business call gets expensive.  And being cranky all day gets you no favors.  But guess what.  Lack of sleep can make you fat, too.  Try to figure that out, since nobody eats when they’re asleep.  Do they?

Just because body functions slow down, it doesn’t mean they stop.  Hormones and other body chemicals are still at work.  Two of those, ghrelin and leptin, are responsible for turning appetite on and off, respectively.  Sleep deprivation seems to crank up the ghrelin and stimulate appetite.  When that happens, you crave more food while losing the sensitivity—or even the common sense—to know when to stop eating.  This problem could well be a circuitous matter:  does fatness cause lack of sleep or is it the other way around, or do they share a common factor?  Hmm.  Michael Breus, sleep researcher extraordinaire, addresses this conundrum in his recently published, “The Sleep Doctor’s Diet Plan:  Lose Weight Through Better Sleep” (Rodale, 2011).  And Dr. Marie-Pierre St-Onge, researcher at the New York Obesity Nutrition Research Center at St. Luke’s-Roosevelt Hospital, adds her expertise by pointing out that sleep-deprived people burn the same number of calories during the day as sound sleepers, but, she adds, eat about three hundred more calories a day.  Since there are 3500 calories in a pound, a person will add that pound to his repertoire in a little less than two weeks (St-Onge, 2011)

The interest in the association of lousy sleep to weight problems is international.  Even in Japan, there’s a St. Luke’s Hospital.  Here, doctors checked out more than 21,000 middle-aged guys’ sleep habits and compared them to individual body mass index, finding that the variability of sleep duration is related to weight gain.  And these participants thought that 6 hours’ sleep was enough (Kobayashi, 2012).  Guess they were wrong.  A year earlier, the same docs at the same hospital compared ~7-hour sleepers to ≤5-hour sleepers, and found weight gain and obesity in the deprived group.  It was interesting to note that there was little difference between the 7-hour and 8-hour subjects (Kobayashi, 2011).  The kicker in the 2011 study is that the investigators also found metabolic syndrome to be related to poor sleep (Kobayashi, Takahashi, et al 2011).

In experimentally-induced sleep loss, insulin sensitivity decreases without compensation in beta-cell function, resulting in impaired glucose tolerance and increased risk for diabetes.  Sleep loss down-regulates leptin function, lowers satiety, and up-regulates the appetite enhancing ghrelin.  Increased appetite = increased food intake=weight gain  (Morselli, 2010) (Chamorro, 2011).  Sleep fragmentation—waking every couple hours—causes daytime sleepiness (Mavanji, 2012). We need a study to show that?   In the valiant effort to revitalize, we turn to sugary foods in the hope they’ll provide bursts of energy lasting long enough to get us through the rest of the day.  Empty calories here.  And the energy high is soon followed by an almost audible crash.

With all the studies being performed in this area, you’d think somebody would be working on a remedy.  Maybe we already have one, but don’t know it.  Have you spoken to your doctor about poor sleep?  If you’d rather do it alone, consider a few simple steps.  Go to bed at the same time every night.  The body needs to know when to go to sleep.  Exercise a little bit every day.  That’ll reduce anxiety, one of the biggest reasons for poor sleep.  But don’t do it just before bed.  Do it a few hours beforehand.  If you’re a worrier, keep a journal.  That helps to identify things that aren’t likely to happen, anyway, so you don’t have to worry about them in the first place.  Try not to delay what needs to be done to prepare for the next day.  You’ll only add to the worry list.  Coffee will try to keep you awake for several hours after the last cup in the afternoon, so don’t drink any after, say, 2 or 3 o’clock.  Alcohol will not improve sleep.  It might make you fall asleep faster, but almost certainly will interrupt restorative sleep.  In the AM, drink water before anything else, and get fifteen minutes of sunlight to help reset your circadian clock.

Although the link between sleep loss and weight gain is convincing, the exact science behind the connection is to be determined.  You can always stay up all night and try to catch the leather fairy cutting your belt a little shorter.  Or you can try an alternative sleep aid, such as valerian, melatonin, or a hops sachet under your pillow.  But check with a healthcare professional before you embark.

References

Chamorro RA, Durán SA, Reyes SC, Ponce R, Algarín CR, Peirano PD.
[Sleep deprivation as a risk factor for obesity].  [Article in Spanish]
Rev Med Chil. 2011 Jul;139(7):932-40.

Knutson KL.
Does inadequate sleep play a role in vulnerability to obesity?
Am J Hum Biol. 2012 Jan 24. doi: 10.1002/ajhb.22219. [Epub ahead of print]

Kobayashi D, Takahashi O, Deshpande GA, Shimbo T, Fukui T.
Relation between metabolic syndrome and sleep duration in Japan: a large scale cross-sectional study.
Intern Med. 2011;50(2):103-7. Epub 2011 Jan 15.

Kobayashi D, Takahashi O, Deshpande GA, Shimbo T, Fukui T.
Association between weight gain, obesity, and sleep duration: a large-scale 3-year cohort study.
Sleep Breath. 2011 Sep 3. [Epub ahead of print]

Kobayashi D, Takahashi O, Deshpande GA, Shimbo T, Fukui T.
Association between weight gain, obesity, and sleep duration: a large-scale 3-year cohort study.
Sleep Breath. 2011 Sep 3. [Epub ahead of print]

Kobayashi D, Takahashi O, Shimbo T, Okubo T, Arioka H, Fukui T.
High sleep duration variability is an independent risk factor for weight gain.
Sleep Breath. 2012 Feb 22. [Epub ahead of print]

Mavanji V, Billington CJ, Kotz CM, Teske JA.
Sleep and obesity: a focus on animal models.
Neurosci Biobehav Rev. 2012 Mar;36(3):1015-29. Epub 2012 Jan 16.

Morselli L, Leproult R, Balbo M, Spiegel K
Role of sleep duration in the regulation of glucose metabolism and appetite.
Best Pract Res Clin Endocrinol Metab. 2010 Oct;24(5):687-702.

Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD.
Insufficient sleep undermines dietary efforts to reduce adiposity.
Ann Intern Med. 2010 Oct 5;153(7):435-41.

Patel SR, Malhotra A, White DP, Gottlieb DJ, Hu FB.
Association between reduced sleep and weight gain in women.
Am J Epidemiol. 2006 Nov 15;164(10):947-54. Epub 2006 Aug 16.

St-Onge MP, Roberts AL, Chen J, Kelleman M, O’Keeffe M, RoyChoudhury A, Jones PJ.
Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals.
Am J Clin Nutr. 2011 Aug;94(2):410-6.

St-Onge MP, McReynolds A, Trivedi ZB, Roberts AL, Sy M, Hirsch J.
Sleep restriction leads to increased activation of brain regions sensitive to food stimuli.
Am J Clin Nutr. 2012 Apr;95(4):818-24.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Why Bother Exercising?

lower-back-painIn our earnest attempts to maintain physical fitness and overall wellness, we occasionally overdo it.  Strengthening the muscles and the cardiovascular system, fine tuning athletic skills for a particular sport, trying to lose weight, or only having fun, humans have forgotten the concept of moderation.  So have couch potatoes, but that’s another story.  Well-orchestrated workouts yield benefits beyond six-pack abs and improved self-image.  They can boost immunity, practically eliminate Type 2 diabetes, improve mental health, and even prevent depression (Colberg, 2012) (Jazaieri, 2012) (Callaghan, 2004) (Venjatraman, 1997).

Both aerobic and anaerobic exercises are good for the heart. Aerobic improves the oxygen system and increases cardiac volume; anaerobic works to improve cardiac muscle strength. Not everyone benefits equally from exercise, though. Genes, diet, and testosterone have significant impact on exercise outcomes, especially in resistance training that anticipates muscle hypertrophy (Brutsaert, 2006). In aerobic exercise, glycogen is broken down to get glucose, which reacts with oxygen to produce carbon dioxide and water while producing energy. If there are no carbohydrates available for this process, fat is used, in which case the process slows down and performance declines. This gradual switch to fat as fuel results in “hitting the wall.” Where glycogen is burned without oxygen, there is anaerobic exercise, an inefficient process that makes the athlete “hit the wall” sooner. Short bursts of intense exertion are characteristic of this type of exercise.

Hey, That Hurt!

In either of these ventures, muscle needs to recover. And tomorrow morning you’ll discover muscle in places you didn’t know existed. Recovery time should be built into an exercise regimen, for this is the time the body adapts to the stress it just endured, and it reaps the benefits of the training. This is where energy stores are replenished and damage control gets to work. Then, there’s the fluid loss that needs to be addressed.  Overtraining without recovery can cause malaise, depressed affect, and increased risk of injury (Vetter, 2010) (Szovak, 2012).

Active recovery, or short-term, is that which occurs in the hours right after a workout, a time to perform low-intensity cool-down activities. This could continue into the next day.  Energy stores need to be rebuilt now to maximize protein synthesis, to prevent muscle breakdown and to increase muscle size. This is the time for the branched-chain amino acids (BCAA), leucine, isoleucine, and valine, three essential amino acids that share a common membrane transport system and account for almost thirty-five percent of the amino acids in muscle proteins.  Since muscle mass in a human is about forty percent of body weight, the reserve of BCAA’s is sizeable. Not only are BCAA’s helpful in recovery, but also they have a place in decreasing muscle soreness if used before a strenuous workout ( Shimomura, 2006). Leucine alone, consumed during steady exercise, was found to improve muscle protein synthesis during recovery (Pasiakos, 2011) (Blomstrand, 2006). Differing from short-term, long-term recovery is built into seasonal exercise programs and includes cross training, modified workouts, and changes in intensity or time.

Recovery?  How? 

During recovery it’s important to restock the stores of nutrients that were sacrificed to performance. You have to repair and recondition muscle. After endurance exercise, like running or cycling, glycogen is the most important factor in determining recovery time, and for this carbohydrates are required. One gram of carbohydrate per kilogram of body mass per hour is needed for recovery. That’s 68 grams for a 150-pound person. Adding protein at this time, at a ratio of 1 to 4, protein to carbs, results in a synergistic increase in insulin secretion that can possibly accelerate glycogen re-synthesis (Betts, 2010) (Beelen, 2010). It’s long been established that consuming carbohydrates and protein during the early phases of recovery plays an important part in subsequent performance.  Start eating within fifteen minutes to two hours after the game. Look for a quarter gram of protein per pound of body weight right away. More than one gram per pound could tax the kidneys.

Electrolyte replacement is vital to overall health as well as to athletic performance.  In this matter, one size does not fit all.  Instead, the factors that contribute to electrolyte and fluid disturbance need to be considered. The weather, prior hydration status, diet, genetics and physiology play a role in determining needs. Don’t rely on thirst to tell you when to drink.  Losing two percent of body weight to sweat begins dehydration; four percent will probably hospitalize you. It’s prudent to weight yourself beforehand, and to drink 24 ounces per pound of weight lost afterward. During the workout, try to get 20 – 40 ounces of fluid an hour. One cup every fifteen minutes is a start. You don’t want to use an electrolyte that contains sugar because that’ll affect the body’s ability to absorb electrolytes. Sodium is the first electrolyte lost to heavy sweating, so it needs replacement right away to prevent dehydration (Shirreffs, 2011) because it helps to retain water. Another benefit of sugarless electrolytes is that they stimulate thirst, so you will drink during a workout.  Prehydrating with an electrolyte at a rate of about one ounce( of diluted product if concentrated) for each ten pounds of body weight, starting a few hours before an event, will enhance fluid absorption during the game.

Anything Else?

Yep. Stretching after an event can assist recovery and help you cool down. Rest never hurts, and occasionally really helps. Getting a rub down improves blood flow; ice is nice.  Then there’s the alternating hot and cold shower. The theory behind this is that repeated constriction and dilation of blood vessels helps to push toxins out. You’ll see plenty of debate about this. Saving the best for last, we have sleep. You heal during sleep. You produce growth hormones.  Loss of sleep diminishes peak power during exercise, partly because it lowers maximum heart rate. It harms coordination and may adversely affect body temperature. When else can you dream about certain victory?

Referenes

Beelen M, Burke LM, Gibala MJ, van Loon L JC.
Nutritional strategies to promote postexercise recovery.
Int J Sport Nutr Exerc Metab. 2010 Dec;20(6):515-32.

Betts JA, Williams C.
Short-term recovery from prolonged exercise: exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements.
Sports Med. 2010 Nov 1;40(11):941-59.

Blomstrand E, Eliasson J, Karlsson HK, Köhnke R.
Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise.
J Nutr. 2006 Jan;136(1 Suppl):269S-73S.

Brutsaert TD, Parra EJ.
What makes a champion? Explaining variation in human athletic performance.
Respir Physiol Neurobiol. 2006 Apr 28;151(2-3):109-23. Epub 2006 Jan 30.

Burke LM, Hawley JA, Ross ML, Moore DR, Phillips SM, Slater GR, Stellingwerff T, Tipton KD, Garnham AP, Coffey VG.
Preexercise Aminoacidemia and Muscle Protein Synthesis after Resistance Exercise.
Med Sci Sports Exerc. 2012 May 22. [Epub ahead of print]

Callaghan P.
Exercise: a neglected intervention in mental health care?
J Psychiatr Ment Health Nurs. 2004 Aug;11(4):476-83.

Colberg SR.
Physical activity: the forgotten tool for type 2 diabetes management.
Front Endocrinol (Lausanne). 2012;3:70. Epub 2012 May 17.

Francis KT.
Effect of water and electrolyte replacement during exercise in the heat on biochemical indices of stress and performance.
Aviat Space Environ Med. 1979 Feb;50(2):115-9.

Howarth KR, Moreau NA, Phillips SM, Gibala MJ.
Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans.
J Appl Physiol. 2009 Apr;106(4):1394-402. Epub 2008 Nov 26.

Ivy JL.
Dietary strategies to promote glycogen synthesis after exercise.
Can J Appl Physiol. 2001;26 Suppl:S236-45.

Jazaieri H, Goldin PR, Werner K, Ziv M, Gross JJ.
A Randomized Trial of MBSR Versus Aerobic Exercise for Social Anxiety Disorder.
J Clin Psychol. 2012 May 23. doi: 10.1002/jclp.21863. [Epub ahead of print]

Jentjens R, Jeukendrup A.
Determinants of post-exercise glycogen synthesis during short-term recovery.
Sports Med. 2003;33(2):117-44.

Lunn WR, Pasiakos SM, Colletto MR, Karfonta KE, Carbone JW, Anderson JM, Rodriguez NR.
Chocolate milk and endurance exercise recovery: protein balance, glycogen, and performance.
Med Sci Sports Exerc. 2012 Apr;44(4):682-91.

Pasiakos SM, McClung HL, McClung JP, Margolis LM, Andersen NE, Cloutier GJ, Pikosky MA, Rood JC, Fielding RA, Young AJ.
Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis.
Am J Clin Nutr. 2011 Sep;94(3):809-18. Epub 2011 Jul 20.

Reitelseder S, Agergaard J, Doessing S, Helmark IC, Lund P, Kristensen NB, Frystyk J, Flyvbjerg A, Schjerling P, van Hall G, Kjaer M, Holm L.
Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion.
Am J Physiol Endocrinol Metab. 2011 Jan;300(1):E231-42. Epub 2010 Nov 2.

Shimomura Y, Yamamoto Y, Bajotto G, Sato J, Murakami T, Shimomura N, Kobayashi H, Mawatari K.
Nutraceutical effects of branched-chain amino acids on skeletal muscle.
J Nutr. 2006 Feb;136(2):529S-532S.

Shirreffs SM, Sawka MN.
Fluid and electrolyte needs for training, competition, and recovery.
J Sports Sci. 2011;29 Suppl 1:S39-46.

Szivak TK, Hooper DR, Kupchak BK, Apicella JM, Saenz C, Maresh CM, Denegar CR, Kraemer WJ.
Adrenal Cortical Responses to High Intensity, Short Rest, Resistance Exercise in Men and Women.
J Strength Cond Res. 2012 May 3. [Epub ahead of print]

Venjatraman JT, Fernandes G.
Exercise, immunity and aging.
Aging (Milano). 1997 Feb-Apr;9(1-2):42-56.

Vetter RE, Symonds ML.
Correlations between injury, training intensity, and physical and mental exhaustion among college athletes.
J Strength Cond Res. 2010 Mar;24(3):587-96.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.