Posts

Flu and Vitamin D3

Flu and Vitamin DIn a sequestered environment such as a classroom or dormitory, influenza can evoke concerns that are more than just casual. It has been noted by scientists and physicians that seasonal variations in ultraviolet radiation from the sun parallel the outbreak of the flu. The more obvious the sun’s activity, the less pronounced are viral infections. The converse is also true. Places at high latitudes do not receive enough sunlight to help the body produce vitamin D, known for its ability to cause an immune response to pathogens.

Studies performed in Norway, at the Institute for Cancer Research at Oslo University Hospital, in 2010, stated definitively that, “Seasonal variations in ultraviolet B (UVB) radiation cause seasonal variations in vitamin D status.”  Immune response and seasonal influenza infection were directly related to vitamin D levels.  This conclusion was drawn from weekly records that monitored the number of influenza cases and flu-related deaths in Sweden, Norway, the United States, Singapore, and Japan in light of concomitant changes in UVB strength. Results of this study indicated that, “…influenzas mostly occur in the winter season in temperate regions,” adding that, “…at high latitudes very little, if any, vitamin D is produced in the skin during the winter.”  (Juzeniene. 2010)

Vitamin D deficiency is related to other matters besides the flu, including some cancers, heart disease, multiple sclerosis, diabetes, autism, and a host of others. (Cannell. 2008)  This pro-hormone has been produced by life forms since the Creation, and is vital to the growth and development of the organism, from gestation to the grave.  Of the common forms, D2 and D3, the latter is more biologically significant, since it is the one made by the skin in response to sunlight exposure.  The supplement is usually derived from either lanolin or cod liver oil.  This—D3— is the form that should be used to treat deficit.  The former, D2, comes from fungal sources by activating ergosterol with UV light, and is not naturally present in humans.  Synthetic, Rx forms are also available.

After being formed in the skin, vitamin D is converted into two different substances in the body. 25-hydroxyvitamin D (calcidiol) is the main storage form made by the liver.  1,25-dihydroxyvitamin D (calcitriol) is the most potent human steroid in the body, usually made in the kidneys. Calcitriol levels should not be used to determine vitamin D status.

Japanese research looked into seasonal flu among school children, from December 2008 to March 2009, and found that those who had not been taking vitamin D3 supplements were considerably more likely to get the flu than those who did supplement. Asthma sufferers experienced fewer exacerbations if they supplemented with the vitamin. (Urashima. 2010)

The sun has an eleven-year cycle during which its radiation level waxes or wanes.  Discovered in the 1840’s by Samuel Schwabe, the cycle can change the amount of UVB light reaching the earth by as much as 400%, more than enough to influence vitamin D stores.  The hypothesis that flu pandemics are associated with solar control of vitamin D levels has been developed and accepted. (Hayes. 2010)  Part of this is based on vitamin D’s ability to help the body make an innate antimicrobial peptide called cathelicidin, which depends upon vitamin D levels of 40 – 70 nanograms per milliliter.  (Cannell)  European researchers believe that the economic burden of the flu on that continent could be reduced by 187 billion euros a year by supplementing with 2000-3000 IU of vitamin D a day.  (Grant. 2009)  Food fortification, artificial UVB, and, of course, supplements are practical options when the sun is unable to do what we expect.

References

MAIN ABSTRACT
Int J Infect Dis. 2010 Dec;14(12):e1099-105. Epub 2010 Oct 29. The seasonality of pandemic and non-pandemic influenzas: the roles of solar radiation and vitamin D. Juzeniene A, Ma LW, Kwitniewski M, Polev GA, Lagunova Z, Dahlback A, Moan J.

Department of Radiation Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway. [email protected]

SUPPORTING ABSTRACTS
Altern Med Rev. 2008 Mar;13(1):6-20.
Use of vitamin D in clinical practice.
Cannell JJ, Hollis BW.

Am J Clin Nutr. 2010 May;91(5):1255-60. Epub 2010 Mar 10.
Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren.
Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H.

Medical Hypotheses. Volume 74, Issue 5, May 2010, Pages 831-834
Influenza pandemics, solar activity cycles, and vitamin D Daniel P. Hayes

Progress in Biophysics and Molecular Biology. 99(2-1); Feb-May 2009: 104-113
Estimated benefit of increased vitamin Dnext term status in reducing the economic burden of disease in western Europe William B. Grant, Heide S. Cross, Cedric F. Garland, et al

Journal of Clinical Virology Volume 50, Issue 3, March 2011, Pages 194-200
Vitamin D and the anti-viral state Jeremy A. Beard, Allison Bearden, and Rob Striker

Archives of Gerontology and Geriatrics
Article in Press, Corrected Proof – Received 15 October 2010; revised 25 February 2011; accepted 28 February 2011. Available online 1 April 2011.
Vitamin D: drug of the future. A new therapeutic approach N. Gueli, W. Verrusioa, A. Linguanti, F. Di Maio, A. Martinez, B. Marigliano and M. Cacciafesta

FASEB J. 2005 Jul;19(9):1067-77.
Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. Gombart AF, Borregaard N, Koeffler HP

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Antibiotic Alternatives

garlic-goldensealLivestock and poultry live in such proximity to each other that they share more than food. They stand in it, they wallow in it, and they breathe it.  How does the farmer in the dell protect his animals from catching each other’s sicknesses and diseases?  From cattle to chickens, and probably even to farmed fish, antibiotics have been necessary evils, having resulted in tremendous increases in animal production and protection of human health.  (Hume. 2011)  It’s been a rare case when these drugs weren’t used.  Some factory farms that swore they were antibiotic free were later found to be in violation of the truth.  Primary care physicians prescribe antibiotics to satisfy their patients’ false beliefs that this class of drug will cure their common cold and remove symptoms of influenza.  (Smucny. 2000)  What’s wrong with this?  Antibiotic resistance is the concern, an issue that develops almost too quickly for science to keep ahead of the pathogens. (Hall. 2004)

Enter the alternatives—the natural antibiotics.

For a reason not yet identified, bacteria have a tough time becoming resistant to natural substances.  Maybe we shouldn’t look a gift horse in the mouth.  Because they are natural, these alternative antibiotics / antivirals cannot be patented.  They are dose-dependent, as well, meaning that you might need more of a substance than your twin brother or sister.  The bacteria we face today are the same ones we faced in past decades, but they don’t die at the hands of the miracle drugs that worked sixty years ago.  These potential killers have been found to fall at the hands of some pretty innocuous characters.  Here are a few.

Goldenseal, the most active compound of which is called berberine, is a supplement that reduces the ability of some streptococcus bacteria to adhere to epithelial cells, the covering of organs that compares to skin.  Berberine is bactericidal and bacteriostatic, killing and preventing bacterial multiplication.  (Sun. 1988)  (Amin. 1969)  In tests at California’s Veterans Affairs Medical Center at San Diego, staff discovered that goldenseal was able to increase antigen-specific immunoglobin (Ig) production, namely IgM, the immunoglobin that responds first to intrusion by pathogens in the bloodstream.  In combination with echinacea (angustifolia), an augmentation of IgG response was noted, thus making invaders subject to destruction by macrophages.  (Rehman. 1999)

Essential oils and extracts from plants have been recognized as being antimicrobial for many years.  They haven’t been studied extensively because there is little profit in substances that can’t be patented.  Pharmaceutical companies have major dollars available for research, but not for anything that grows in your yard.  In 1999, the University of Western Australia pulled out all the stops and investigated more than fifty plant oils and extracts for their efficacy as antimicrobial agents.  No less than ten common bacteria strains fell prey to oils lemongrass, oregano, and bay, including E. coli, Candida albicans, Staphylococcus aureus, and two pneumonia bacteria.  The remaining oils and extracts showed variable activity, but the notion of using plant oils as pharmaceutical agents was supported.  (Hammer. 1999)  A year later, in the UK, Scots found that “volatile oils exhibited considerable inhibitory effects against all the organisms under test…” (Dorman. 2000)

A perpetual favorite, garlic is one of the better-known and more frequently enlisted of the antiviral compounds.  One of the neatest stories about this plant is that the crooks who wandered Europe during the Black Death rampage of the 14th century survived the plague only because garlic was a mainstay of their diets.  At the end of the last century it was ascertained effective against E.coli in work conducted at Hirosaki University in Japan.  (Sasaki. 1999)   Fresh garlic was used in those tests and in earlier American studies at Brigham Young University, where garlic thiosulfates demonstrated virucidal properties against every strain of virus tested. (Weber. 1992)  Even MRSA is controllable with garlic given at twelve-hour intervals.  (Tsao.  2007)  This seems too simple.

Staphylococcus aureus, the villain of MRSA fame, succumbed to just the vapors exuded by a combined grapefruit seed extract and geranium oil extract in experiments done with burn dressings at a British hospital in 2004. (Edwards-Jones. 2004)  Studies on echinacea are fraught with controversy because of inconsistencies in methodology.  The plant responds to variations in cultivation factors that include weather, soil type, irrigation, fertilizers, and more.  The species and the parts of the plant used, and processing measures, make a difference in outcomes.  Generally, echinacea is better at prevention than cure, although it may relieve the common cold a few days sooner. (Schulten. 2001)  Used for respiratory infections, it may have no benefit at all. (Barrett. 1999)  Maybe a positive expectation makes a difference.  Whatever message you take home from this, don’t ask your doctor for an antibiotic to treat your runny nose, sore throat and fever.

References

MAIN ABSTRACTS
Hume ME.
Historic perspective: Prebiotics, probiotics, and other alternatives to antibiotics.
Poult Sci. 2011 Nov;90(11):2663-9.

Smucny J, Fahey T, Becker L, Glazier R, McIsaac W.
Antibiotics for acute bronchitis.
Cochrane Database Syst Rev. 2000;(4):CD000245.

Barry G. Hall
Predicting the evolution of antibiotic resistance genes
Nature Reviews Microbiology 2, 430-435 (May 2004)

SUPPORTING ABSTRACTS
Sun D, Courtney HS, Beachey EH.
Berberine sulfate blocks adherence of Streptococcus pyogenes to epithelial cells, fibronectin, and hexadecane.
Antimicrob Agents Chemother. 1988 Sep;32(9):1370-4.

Amin AH, Subbaiah TV, Abbasi KM.
Berberine sulfate: antimicrobial activity, bioassay, and mode of action.
Can J Microbiol. 1969 Sep;15(9):1067-76.

Rehman J, Dillow JM, Carter SM, Chou J, Le B, Maisel AS.
Increased production of antigen-specific immunoglobulins G and M following in vivo treatment with the medicinal plants Echinacea angustifolia and Hydrastis canadensis
Immunol Lett. 1999 Jun 1;68(2-3):391-5.

Hammer KA, Carson CF, Riley TV.
Antimicrobial activity of essential oils and other plant extracts.
J Appl Microbiol. 1999 Jun;86(6):985-90.

Dorman HJ, Deans SG.
Antimicrobial agents from plants: antibacterial activity of plant volatile oils.
J Appl Microbiol. 2000 Feb;88(2):308-16.

Sasaki J, Kita T, Ishita K, Uchisawa H, Matsue H.
Antibacterial activity of garlic powder against Escherichia coli O-157.
J Nutr Sci Vitaminol (Tokyo). 1999 Dec;45(6):785-90.

Tsao SM, Liu WH, Yin MC.
Two diallyl sulphides derived from garlic inhibit meticillin-resistant Staphylococcus aureus infection in diabetic mice.
J Med Microbiol. 2007 Jun;56(Pt 6):803-8.

Weber ND, Andersen DO, North JA, Murray BK, Lawson LD, Hughes BG.
In vitro virucidal effects of Allium sativum (garlic) extract and compounds
Planta Med. 1992 Oct;58(5):417-23.

Edwards-Jones V, Buck R, Shawcross SG, Dawson MM, Dunn K.
The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model.
Burns. 2004 Dec;30(8):772-7.

Barrett BP, Brown RL, Locken K, Maberry R, Bobula JA, D’Alessio D.
Treatment of the common cold with unrefined echinacea. A randomized, double-blind, placebo-controlled trial.
Ann Intern Med. 2002 Dec 17;137(12):939-46.

Schulten B, Bulitta M, Ballering-Brühl B, Köster U, Schäfer M.
Efficacy of Echinacea purpurea in patients with a common cold. A placebo-controlled, randomised, double-blind clinical trial.
Arzneimittelforschung. 2001;51(7):563-8.

Barrett B, Vohmann M, Calabrese C.
Echinacea for upper respiratory infection.
J Fam Pract. 1999 Aug;48(8):628-35.

Blaser M.
Antibiotic overuse: Stop the killing of beneficial bacteria.
Nature. 2011 Aug 24;476(7361):393-4. doi: 10.1038/476393a.

Arnold SR, Straus SE.
Interventions to improve antibiotic prescribing practices in ambulatory care.
Cochrane Database Syst Rev. 2005 Oct 19;(4):CD003539.

Zenner D, Shetty N.
European Antibiotic Awareness Day 2011: antibiotics–a powerful tool and a dwindling resource.
Fam Pract. 2011 Oct;28(5):471-3.

Linder JA, Huang ES, Steinman MA, Gonzales R, Stafford RS.
Fluoroquinolone prescribing in the United States: 1995 to 2002.
Am J Med. 2005 Mar;118(3):259-68.

Smucny J, Fahey T, Becker L, Glazier R, McIsaac W.
Antibiotics for acute bronchitis.
Cochrane Database Syst Rev. 2000;(4):CD000245.

Hueston WJ.
Antibiotics: neither cost effective nor ‘cough’ effective
J Fam Pract. 1997 Mar;44(3):261-5.

Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP.
Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use.
JAMA. 2003 Feb 19;289(7):885-8.

Harrison JW, Svec TA.
The beginning of the end of the antibiotic era? Part II. Proposed solutions to antibiotic abuse.
Quintessence Int. 1998 Apr;29(4):223-9.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.