Posts

Salt May Not Be As Bad As They Say…Or Is It?

regulate salt intakeUsing a sufficiently large set of data, the Cochrane Library, a highly respected international collaboration of evidence-based medicine reviews, was able to draw startling conclusions about the association of salt intake with high blood pressure and cardiovascular risks. After looking at almost 6,500 people, comprising several well-conducted studies, Cochrane found that, for CVD mortality and all-cause mortality in persons with normal or elevated blood pressure, there is no strong evidence for restricting salt intake.

The American Journal of Hypertension reported Cochrane’s findings in July of 2011, stating that, “Although meta-analyses of randomized controlled trials of salt reduction report a reduction in the level of blood pressure, the effect of reduced dietary salt on cardiovascular disease events remains unclear.”  However, it was also found that salt reduction “was associated with reductions in urinary salt excretion…and reductions in systolic blood pressure between 1 and 4 mm Hg.”  Additionally, relative risk did not show evidence of any effect of salt reduction on cardiovascular episodes in people with normal BP, but noted that, “salt restriction increased the risk of all-cause mortality in those with heart failure.”

The Cochrane reviewers admitted that, despite collecting more data than ever before, there is still no definitive proof that salt reduction will have beneficial effects on all-cause mortality or on the risk of cardiovascular disease.  At the same time, Katherine Jenner, campaign director of the Consensus Action on Salt and Health (CASH), disputes these findings, adding that there are no trials to account for other chronic exposures, such as smoking and being overweight, and eating too few fruits and vegetables.  She stated strongly that it would be unethical to expose humans to a long period of high salt intake merely to satisfy the curiosity of researchers.  To add to this confusion, the Cochrane leader, Rod Taylor, said that large benefits were not seen because salt reduction was sufficiently minimal as to cloud significant effects on BP and heart disease.  Huh?

Prior to the development of refrigeration, salt was necessary for the preservation of food.  Milk was made into cheese using salt, and fish was salted to keep it for long periods.  Eating as we do, many of us accumulate more salt and water than the kidneys can handle.  Some folks have genes that control cellular channels, enzymes and hormones at various places in the kidneys, conserving salt to enable adaptation to hot and dry climates.  If water and salt were scarce, as would often be the case in mankind’s early days, the kidney would conserve salt to hold the water that would become sweat, which would evaporate from the skin and cool the body enough to keep temperature stable.  Without sweat the body would overheat.  These genes that were important to early mankind never stopped doing their job, regardless of climate.  About 20% of us will continue to reabsorb salt as long as excessive amounts are ingested.  Salt retains water through osmosis.  It also promotes thirst.  Why else would there be a bowl of salty pretzels or nuts on the bar?

Excess salt keeps circulatory volume higher than it needs to be, putting extra fluid pressure on blood vessel walls.  The walls react to this stress by getting thicker and narrower, leaving less space for the fluid already cramped inside, thereby raising resistance to flow and increasing the pressure needed to get it moving.  Because the heart has to pump against greater pressure, it can grow larger, just like the skeletal muscles subjected to heavy pressure from lifting weights.  Whatever excess pressure is exerted on the kidneys causes those organs to compromise their delicate filtration system, leading to disease.

Beyond reducing blood pressure, a low sodium intake improves the dilation of the blood vessels and consequently improves heart function.  Dilation of blood vessels is considerably greater in a low-sodium environment. (Dickinson. 2009)  Systolic pressure will drop, as well.

At a time when the U.S. advocates lowering salt intake from 2,300 mg a day to 1,500 mg a day, the Europeans are happy to see their intake lowered to 5,000 mg a day.  Considering that the typical European intake seems to be around 9,000 to 12,000 mg a day, that is quite a change.  Naturally, they would see a drop in blood pressure.  (He and Burnier. 2011)  Salt sensitivity is subjective, though, and not everyone would have a BP spike because of intake.

But now there might just be way to help control salt-induced blood pressure elevation. Researchers at Loyola University, under the direction of Dr. Paul Whelton, learned that the ratio of sodium to potassium is a more important indicator of cardiovascular problems than either salt or potassium alone.  (Whelton and Cook. 2009)  Little studied, potassium is the element on the other side of the cell membrane from sodium. Most of us are potassium deficient, consuming far less than the 4,700 mg a day that is suggested. The recommended 9 to 13 servings of fruits and vegetables a day, the most reliable sources of this mineral, is uncommon in the contemporary diet.  A high sodium to potassium ratio can be predictive of future coronary episodes; a low one, the opposite.  In his study, Dr. Whelton says that 2,300 milligrams should be the maximum sodium intake a day for those less than 30 years old, half that for those who are older.

Sodium is not salt, and salt is not sodium. About 40% of salt is sodium, the remainder being chloride, the chemical of which stomach acid is made.

For some of us, salt might be off the hook. For others of us, it might be a gremlin. It can be hidden in frozen dinners, some cereals, vegetable juice, canned vegetables and soups, sauces and marinades, snacks, and condiments. Potassium, on the other hand, is friendly to all. Jing Chen and his colleagues agree. (Chen. 2008)

References

MAIN ABSTRACT
Am J Hypertens. 2011 Jul 6. doi: 10.1038/ajh.2011.115. [Epub ahead of print]
Reduced Dietary Salt for the Prevention of Cardiovascular Disease: A Meta-Analysis of Randomized Controlled Trials (Cochrane Review). Taylor RS, Ashton KE, Moxham T, Hooper L, Ebrahim S.

Cochrane Database of Systematic Reviews 2011, Issue 7.
Reduced dietary salt for the prevention of cardiovascular disease.
Taylor RS, Ashton KE, Moxham T, Hooper L, Ebrahim S.

SUPPORTING ABSTRACTS
Am J Clin Nutr February 2009 vol. 89 no. 2 485-490
Effects of a low-salt diet on flow-mediated dilatation in humans
Kacie M Dickinson, Jennifer B Keogh, Peter M Clifton

Arch Intern Med. 2008;168(16):1740-1746.
Association Between Blood Pressure Responses to the Cold Pressor Test and Dietary Sodium Intervention in a Chinese Population
Jing Chen, MD, MSc; Dongfeng Gu, MD, MSc; Cashell E. Jaquish, PhD; et al

Arch Intern Med. 2009;169(1):32-40.
Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease
The Trials of Hypertension Prevention Follow-up Study
Nancy R. Cook, ScD; Eva Obarzanek, PhD; Jeffrey A. Cutler, MD; Julie E. Buring, ScD; Kathryn M. Rexrode, MD; Shiriki K. Kumanyika, PhD; Lawrence J. Appel, MD; Paul K. Whelton, MD

Eur Heart J. 2011 Jun 23. [Epub ahead of print]
Nutrition in cardiovascular disease: salt in hypertension and heart failure.
He FJ, Burnier M, Macgregor GA.

Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Yoga

yogawomanIf there exists such a philosophical regime that can bring a person closer to Elysium in every aspect of life—balance, health, aging—its enthusiasts argue that it is yoga.  Investigations into the complexities of this physical / mental / spiritual discipline have focused on the almost inexplicable efficacy of its practice.  That it is conjectured to effect a return to normal following a physical or mental derangement deserves at least a little attention.

The cognitive behaviors of yoga entail calorie restriction, meditation, breathing techniques and additional practices that separate it from other holistic modalities, and have a distinct affect on the function of the human body.  Research at the Albert Einstein College of Medicine, in New York, has classified yoga’s influence on human physiology into four categories that encompass humoral factors (affecting immunity), CNS activity, cell trafficking, and bioelectromagnetism (the study of membrane and action potential).  The investigators allowed that, “…yogic practices might optimize health, delay aging, and ameliorate chronic illness and stress from disability.”  (Kuntsevich. 2010)  A reductionist approach tries to explain complex matters by using the simplest of its facets and nomenclature, but this cannot address the intricacy of yoga and its long-term benefits to the whole person.

From lower back pain, arthritis and carpal tunnel syndrome, all the way to functional development in children, yoga has been an oft-visited body of knowledge.  Practicing yoga increases flexibility, strength and stamina, and can do that in the gentlest of manners using Hatha techniques, or by employing the more explosive Ashtanga form, which relies on quick movements from one pose to another.

Because lower back pain cannot satisfactorily be treated with surgery and injections, other interventions have been pursued, yoga paramount among them.  Chronic back pain has a significant impact on a person’s ability to work and perform daily tasks.  The fact that pain is non-specific makes some therapies uncertain, but the physical motions of yoga meet the need for non-invasive remediation.  (Carter. 2011)  Perhaps it is such that synovial lubrication is enhanced, or that directed movements create healing substances at the cellular level.  Whatever the reason, it works.

If yoga intensifies a person’s awareness of his body and helps him to understand his relationship to a body in pain, with the expectation of attenuating discomfort, then the discipline has been effective, particularly in changing cognitions and behaviors towards nociception.  (Tul. 2011)  Modified forms of Hatha yoga have been tested on such patients with outcomes that were not surprising.  Not only were flexibility and reach improved, but also the emotional insults that accompany refractory pain, such as anxiety and mild depression, were reduced, as reported in a study performed at the Richard Stockton College of New Jersey, providing renewed interest in additional study on the salubrious nature of yoga.  (Galantino.  2004)

Recent work at Johns Hopkins examined prior studies on yoga’s application to arthritis, and found that evidence was strong for reduced disease symptoms and disability, especially the tender and swollen joints that characterize the condition.  (Haaz.  2011)  Noting that it can be tailored to the specific needs of the geriatric population, investigators at the University of Pittsburgh concluded that yoga is among the mind-body interventions associated with reduced pain perception.  (Morone.  2007)

Executive function in a human being is that capacity to make decisions in novel situations, outside the domain of normal automatic processes.  This is tantamount to thinking outside the box, and appears to be a desirable developmental milestone in children.  Yoga is just one of the activities that can help to develop such a trait, one that telegraphs creativity, flexibility, self-control, and self-discipline.  The physical benefits are the cherry on top.  (Diamond. 2011)

It is accepted that what enters a pregnant woman’s digestive system has an effect on the neonate, as well as on the mother.  Could mind-body processes do the same?  There is evidence that improvement in perceived stress, mood, and perinatal outcomes may be realized from practicing yoga.  Not only that, but also it was found that such practices resulted in higher birth weight, less time in labor, and fewer instrument-assisted births, accompanied by lower stress and anxiety levels in both mother and child.  (Beddoe. 2008)  Good news, eh?

Other health issues that benefit from yogic practices include metabolic syndrome (Anderson.  2011), chronic obstructive pulmonary disease (Fulambarker.  2010), and essential hypertension (Anand.  1999).  Each deserves additional attention.

References

Kuntsevich V, Bushell WC, Theise ND.
Mechanisms of yogic practices in health, aging, and disease.
Mt Sinai J Med. 2010 Sep-Oct;77(5):559-69.

Carter C, Stratton C, Mallory D.
Yoga to treat nonspecific low back pain.
AAOHN J. 2011 Aug;59(8):355-61; quiz 362.

Tul Y, Unruh A, Dick BD.
Yoga for chronic pain management: a qualitative exploration.
Scand J Caring Sci. 2011 Sep;25(3):435-43. doi: 10.1111/j.1471-6712.2010.00842.x.

Galantino ML, Bzdewka TM, Eissler-Russo JL, Holbrook ML, Mogck EP, Geigle P, Farrar JT.
The impact of modified Hatha yoga on chronic low back pain: a pilot study.
Altern Ther Health Med. 2004 Mar-Apr;10(2):56-9.

Haaz S, Bartlett SJ.
Yoga for arthritis: a scoping review.
Rheum Dis Clin North Am. 2011 Feb;37(1):33-46.

Morone NE, Greco CM.
Mind-body interventions for chronic pain in older adults: a structured review.
Pain Med. 2007 May-Jun;8(4):359-75.

Diamond A, Lee K.
Interventions shown to aid executive function development in children 4 to 12 years old.
Science. 2011 Aug 19;333(6045):959-64.

Beddoe AE, Lee KA.
Mind-body interventions during pregnancy.
J Obstet Gynecol Neonatal Nurs. 2008 Mar-Apr;37(2):165-75.

Anderson JG, Taylor AG.
The metabolic syndrome and mind-body therapies: a systematic review.
J Nutr Metab. 2011;2011:276419.

Fulambarker A, Farooki B, Kheir F, Copur AS, Srinivasan L, Schultz S.
Effect of Yoga in Chronic Obstructive Pulmonary Disease
Am J Ther. 2010 Oct 22.

Anand MP.
Non-pharmacological management of essential hypertension.
J Indian Med Assoc. 1999 Jun;97(6):220-5.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Athletes And Fuel – Feeling Fuelish?

runnerWhen it comes to fueling an athlete, there had been as many approaches as there are sports to play. Several respected bodies have merged philosophies to incorporate and publicize nutritional recommendations that can be adapted to most athletic pursuits. There is much about diet that is common sense, but the habits cultivated from family traditions just might fly in the face of that. Ethnic or regional cuisines may feature foods that upset the balance of both macro- and micro-nutrient intake. There is no doubt that the physiological needs of serious athletes have to be the first consideration in finding and combining the right fuels.

Optimal nutrition is mandatory if an athlete wants to realize his full potential during an event. Not only performance, but also recovery, is enhanced by food intake. A position paper issued jointly by the American Dietetic Association, the Dietitians of Canada, and the American College of Sports Medicine, states, “Energy and macronutrient needs, especially carbohydrate and protein, must be met during times of high physical activity to maintain body weight, replenish glycogen stores, and provide adequate protein to build and repair tissue,” continuing that, “Adequate food and fluid should be consumed before, during, and after exercise to help maintain blood glucose concentration during exercise, maximize exercise performance, and improve recovery time. Athletes should be well hydrated before exercise and drink enough fluid during and after exercise to balance fluid losses.”  (Rodriguez. 2009)

Your performance will be affected by genetics (over which you have zero control), training (over which you have total control), and diet (ditto). If you fail to consume enough energy, the body will use both fat and lean tissue as fuel. Strength and endurance will then suffer, and the immune system and endocrine glands will pay a stiff price. If you’re trying to lose weight, you still have to pay attention to energy intake. It takes calories to burn calories. This is especially true for women, who may experience amenorrhea and osteoporosis if they aren’t careful.

You can store about 400 to 600 grams of carbohydrates, or 1600 to 2400 calories’ worth. These glycogen stores can be burned in 1 ½ to 2 hours, after which fat is mobilized and you “hit the wall.”  You don’t want to get more than about 60 grams of carbohydrates (CHO) an hour while in a marathon, for example, or you might cramp, but your daily intake could be 5-7 grams per kilogram a day (about 3 grams per pound) for moderate exercise that lasts less than 1 ½ hours. For more intense exercise, like that marathon or a cycling event, that lasts more than a couple hours, you’ll need 8-12 grams of CHO a day per kilogram of body weight. Do this prior to, not during, an event. (Burke. 2011)  You might as well convert your body weight to kilograms now. Divide pounds by 2.2 and you’ll have it.

Eating before an event will enhance performance compared to fasting. Common sense says to eat lesser amounts an hour before an event than you would eat four hours ahead of a strenuous workout. Traditional wisdom says that consuming up to 1 gram of CHO per kg is fine one hour before the start; Consuming 4.5 gm/kg is O.K. four hours before. Take it easy on the fiber and fat, though, or you might experience GI distress. During practice sessions is the time to experiment with different foods to come up with effective refueling strategies that fit you.

Protein intake depends on the type and duration of exercise. 0.8 gm/kg/day is fine for the general public, but you’ll probably need more. An endurance athlete will need 1.2-1.4 gm/kg/day, while a weight lifter needs up to 1.7 gm/kg/day. More than 2.0 mg/kg can tax the kidneys and won’t make much physiological difference. It’s important to get protein right after exercise. There’s a 15 minute to 2-hour window during which muscle balance can be increased and muscle tissue can be repaired. Protein supplements are nothing more than a convenience. Besides, such supplements can become delivery systems for things you neither want nor need, like steroids and other illicit substances.

At the end of your performance you need to refill your buckets. That’s called recovery. Adding protein to your carbohydrate intake at a ratio of 3:1 or 4:1, CHO:Pro, can enhance recovery. (Ivy. 2001)  We know of a few marathoners who eat tuna sandwiches with chocolate milk. You might opt for a bowl of Cheerios and a banana, or a yogurt-fruit smoothie and pretzels. Listen to your body. You might end with steak and potatoes. Lemon meringue pie, and carrot cake, and oatmeal cookies, and…  Dream on….PSST, you can do without the sugar.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Longevity And Stress

hand-squeezing-stress-ballJust as oxidation causes iron to rust and brass to tarnish, it causes our cells to rust and tarnish, only figuratively and not literally…unless the Tin Man is part of the gene pool.  When you get stressed out—and there’s a litany of reasons for that—your body makes oxidative chemicals that hasten aging, increase cardiovascular risk, and set the stage for myriad chronic and acute illnesses, including relatively benign things like colds.

Vanderbilt University discovered that accurate and uncomplicated assessment of oxidative stress inside the body could be accomplished by the measurement of chemicals called isoprostanes.  These substances are derived from the action of free radicals on fatty acids, and can be found in plasma and urine.  Primarily associated with risk of atherosclerosis, isoprostanes levels are elevated by “cigarette smoking, hypercholesterolemia, diabetes mellitus, and obesity,” among other factors.  Additionally, “Enhanced oxidant stress occurring either locally in the vessel or systemically is implicated…in atherosclerosis in humans.”  (Morrow. 2005)   In circumstances not cardiac-related, isoprostanes are inflammatory mediators that augment the perception of pain.

As long as there is oxygen there will be oxidation, but most species have developed ways to deal with it.  What separates humans from other life forms is that we do things on purpose to increase the oxidative process.  We eat the wrong foods, we smoke, we are sedentary, and we worry about things that never happen, while fretting about things we cannot change.  We even worry about getting diseases that are not likely to attack us by virtue of genetic exclusion, but sometimes do get a start because we worried about them needlessly.  The body’s response to oxidative stress, which can be prompted by both mental and physical assaults, is tied to aging and life span.  (Finkel. 2000)

There is increasing evidence that psychosocial stress can cause system-wide derangement of cellular homeostasis, accompanied by heightened oxidative stress and pro-inflammatory activity.  (Marotta. 2011)  Persons under stress have elevated levels of malondialdehyde (MDA), a product that stems from the oxidation of fatty acids and that degrades the integrity of the cell.  This, in turn, can cause mutations of DNA.  That can initiate a plethora of unwelcome events.

Mental stress can incite physical responses, some of which may appear as gastrointestinal conditions, tension headaches, hypertension, irritable bowel syndrome, sexual dysfunction, alcoholism, fatigue, and skin conditions that include psoriasis, lichen planus, itching and hives.  Some or all of these may be related to increased cortisol production by the adrenal glands.  Stress can affect other hormones, as well, and is implicated in depression and impaired immune function.

Because the brain has high fatty acid content, it seems logical that fatty acids are involved in brain chemistry, physiology, and function.  Therefore, it follows that cognitive health and neuropsychiatric well-being are intertwined.  Omega-3 fatty acids, such as those from fatty fish and fish oil supplements, appear effective in the prevention of stress (and manufacture of cortisol) and in the regulation of mood.  (Perica. 2011)  In fact, the first consistent demonstration of the effect of dietary ingredients on the structure and function of the brain involved omega-3 fats.  (Bourre. 2005)

At the ends of our chromosomes are telomeres, pieces of DNA that are the equivalent of shoelace aglets (those plastic sheaths that help to thread the laces).  When telomeres start to fray because of continual cell replication, cells become senescent—they grow old.  Oxidative stress shortens telomeres, thus hastening aging and the onset of age-related diseases, none of which started yesterday.  (Epel. 2004)  If cortisol is one of the major hormones related to telomere shortening, then it is to our benefit to diminish it.  Stressors coming from outside the body are not so easy to handle.  But this does not mean that internalized stressors are more manageable.  Maintaining proper weight and controlling glucose are important stressors to consider.

The employment of functional foods and certain supplements can help to ease stress, to lighten the cortisol load, and to bolster immune defenses.  Telomeres may be preserved by a diet that reduces added sugars.  Essential fatty acids can ease the mental burdens of the daily grind.  Green tea polyphenols have shown to be effective in addressing a variety of oxidative, pro-inflammatory processes (Yang. 1998), while having a beneficial effect on nucleic acid and protein synthesis (Beltz. 2006).  The vitamin B complex is collectively known as the stress vitamins, and their utility as such has been reported often over past decades (Kennedy. 2011)  (Stough. 2011)  Intense Chinese research has discovered that telomeres may be rescued from senescence by epigallocatechin gallate (ECGC) in green tea, and by quercitin from apples, onions, citrus, and dark berries. (Sheng. 2011)

Stress-fighting, mood-lifting foods include such simple ingredients as oatmeal, pistachios, avocadoes, and wine.  Turkey, eggs, water, and almonds can affect your affect.  Chocolate can calm things by releasing endorphins, and walnuts can get rid of the blues by increasing uridine, which boosts communication among neurons.  Spinach helps maintain normal levels of serotonin, a mood enhancer that also deals with the sleep-wake cycle and pain perception.  If, on the other hand, you care little about stress and what it does to your body, go ahead and eat half a dozen bacon-fried doughnuts.

References

Morrow JD.
Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans.
Arterioscler Thromb Vasc Biol. 2005 Feb;25(2):279-86.

Finkel T, Holbrook NJ.
Oxidants, oxidative stress and the biology of ageing.
Nature. 2000 Nov 9;408(6809):239-47.

Marotta F, Naito Y, Padrini F, Xuewei X, Jain S, Soresi V, Zhou L, Catanzaro R, Zhong K, Polimeni A, Chui DH.
Redox balance signalling in occupational stress: modification by nutraceutical intervention.
J Biol Regul Homeost Agents. 2011 Apr-Jun;25(2):221-9.

Perica MM, Delas I.
Essential fatty acids and psychiatric disorders.
Nutr Clin Pract. 2011 Aug;26(4):409-25.

Bourre JM.
Dietary omega-3 Fatty acids and psychiatry: mood, behaviour, stress, depression, dementia and aging
J Nutr Health Aging. 2005;9(1):31-8.

Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM.
Accelerated telomere shortening in response to life stress.
Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17312-5.

Yang F, de Villiers WJ, McClain CJ, Varilek GW.
Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model.
J Nutr. 1998 Dec;128(12):2334-40.

Beltz LA, Bayer DK, Moss AL, Simet IM
Mechanisms of cancer prevention by green and black tea polyphenols.
Anticancer Agents Med Chem. 2006 Sep;6(5):389-406.

Kennedy DO, Veasey RC, Watson AW, Dodd FL, Jones EK, Tiplady B, Haskell CF.
Vitamins and psychological functioning: a mobile phone assessment of the effects of a B vitamin complex, vitamin C and minerals on cognitive performance and subjective mood and energy.
Hum Psychopharmacol. 2011 Jul 12. doi: 10.1002/hup.1216.

Stough C, Scholey A, Lloyd J, Spong J, Myers S, Downey LA.
The effect of 90 day administration of a high dose vitamin B-complex on work stress.
Hum Psychopharmacol. 2011 Sep 8. doi: 10.1002/hup.1229.

Sheng R, Gu ZL, Xie ML
Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy.
Int J Cardiol. 2011 Oct 14.

Huk-Kolega H, Skibska B, Kleniewska P, Piechota A, Michalski Ł, Goraca A.
Role of lipoic acid in health and disease
Pol Merkur Lekarski. 2011 Sep;31(183):183-5.

Rios A, Delgado-Casado N, Cruz-Teno C, Yubero-Serrano EM, Tinahones F, Malagon MD, Perez-Jimenez F, Lopez-Miranda J.
Mediterranean diet reduces senescence-associated stress in endothelial cells.
Marin C, Delgado-Lista J, Ramirez R, Carracedo J, Caballero J, Perez-Martinez P, Gutierrez-Mariscal FM, Garcia-
Age (Dordr). 2011 Sep 6.

Lin J, Epel E, Blackburn E.
Telomeres and lifestyle factors: Roles in cellular aging.
Mutat Res. 2011 Aug 22.

Murillo-Ortiz B, Albarrán-Tamayo F, Arenas-Aranda D, Benítez-Bribiesca L, Malacara-Hernández J, Martínez-Garza S, Hernández-González M, Solorio S, Garay-Sevilla M, Mora-Villalpando C.
Telomere length and type 2 diabetes in males, a premature aging syndrome.
Aging Male. 2011 Aug 9.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Lead And Violent Behavior

police-lineWhat’s This?

Childhood exposure to lead dust has been associated with enduring physical and behavioral effects.  Recent exploration into this public health menace has revealed that leaded gasoline, used to reduce engine knocking and to modify octane levels from the 1920’s to the 1970’s, is no less involved in the damage than the lead from paint and water supply lines (either from solder or from lead pipes).  The city air that was contaminated by vehicle exhaust decades ago has been linked to increased violent crime.  You might wonder how lead would stay in the air for decades.  It usually doesn’t, but lead particles land on the lawn, the sidewalk, the playground, and waft into your front door, alighting on the carpet and furniture.

Recent research by Tulane toxicologist Howard W. Mielke and demographer Sammy Zahran, from Colorado State University’s Center for Disaster and Risk Analysis, compared the amount of lead released in six American cities:  Atlanta, Chicago, Indianapolis, Minneapolis, New Orleans, and San Diego, covering the span from 1950 to 1985.  The changes in lead values during those years were matched by parallel ups and downs of aggravated assaults, as garnered from FBI records.  The analysis of data revealed that for each one percent increase in airborne lead dust exposure there was a related increase in aggravated assault by a half percent (Mielke and Zahran, 2012).

Lead has been used for thousands of years, poisoning people along the way.  The complete picture of lead’s toxicity was barely realized until the second half of the 20th century, when it was finally admitted that there is no safe threshold for lead exposure—there is no known amount of lead too small to do damage.

Developing fetuses are susceptible to the lead contamination of their mothers, and are likely to be premature or of low birth weight, especially for first delivery (Torres-Sanchez, 1999) (Cleveland, 2008).  Because their bodies are smaller and in a constant state of growth and development, children are more at risk for lead poisoning.   They absorb it faster, suffering more physical harm than an adult, and because they spend time on the floor learning to crawl and walk, their exposure is pronounced.  It’s common to see slow development of expected childhood milestones, such as talking and combining words, in cases such as this, which often eventuate to loss of appetite, abdominal distress and vomiting, weight loss, constipation, anemia, kidney failure, irritability, lethargy, failure to thrive, learning disabilities and behavioral problems (Landrigan, 2002).  Early lead exposure is decidedly prophetic of later neurological abnormalities (Nie, 2011), reduced IQ among them.  Blood lead concentrations that peak at age two are thought to lower IQ scores at ages 4 to 6, when IQ becomes sufficiently stable to measure (Chen, 2005).

How Did It Get There?

By this time you might think this is more an urban concern than a suburban or rural one.  Depending on the age of the domicile, you’re partly right.  Regardless of location, many, if not most, homes built prior to 1978 were slathered with lead paint inside and out.  Because lead tastes sweet, flakes of it found their way into the mouths of toddlers, not only from walls and trim, but also from furniture and toys.  The rail of a crib often served as a teething ring.  Urban environs are more likely to house factories and industries that either produce lead-related goods, including batteries, wire and pipes, some medical equipment, ceramic glazes, ammunition, and circuit boards, or that recycle such commodities.  That would increase the odds of lead exposure by a substantial margin.  And the plumbing use of lead in solder and pipe joining was ubiquitous until the advent of plastics.  On the rural side of this coin sit lead-tainted pesticides and exhaust particles from agricultural equipment and contaminated ground water from airborne lead sources miles away.  Not many people eat game harvested with lead ammunition, so that source is not worth the mention.  Ingesting a bullet or a piece of lead shot is a remote probability.

Attitude Adjustment

Lead exposure is not limited to the United States, but is problematic wherever there is cultural and industrial development.  The birth-to-twenty cohort recently studied in South Africa, comprising more than a thousand adolescents, demonstrated a relationship of lead exposure to rule breaking and aggressive behavior (Naicker, 2012).  To explain this behavioral anomaly, scientists looked for a neuroanatomical commonality, discovering decreases in brain volume associated with childhood lead levels.  In this inquiry they found that total brain gray matter is inversely associated with blood lead concentration, particularly in the area of the brain responsible for relaying nerve signals between the right and left hemispheres, a spot that controls rational cognitive functions as well as autonomic functions such as the regulation of blood pressure, digestion and respiration (Cecil, 2008).  Gray matter volume loss was more obvious in males than in females.  The result is that lead affects the prefrontal cortex so dramatically that executive function and decision-making suffer, leading to persistent antisocial behavior (Tiihonen, 2008).

Society has associated underprivileged life with increased odds of criminal activity, but was heretofore unable to put a finger on causality.  Acceptable lead levels for children have been 10 micrograms per deciliter.  This was to have been lowered to 5 mcg/dL by 2012.  Adult levels have been established at 25 mcg/dL.  In children, an increase from 10 to 20 mcg is associated with almost a three point drop in IQ (Schwartz, 1994), affecting levels of GABA, which slows down the activity of nerve cells in the brain, and of NMDA, which is an amino acid derivative labeled as an excitotoxin that wires up neuronal circuits (Watkins, 2006).  Lead exposure crosses socio-economic lines and thus becomes an equal opportunity toxicant that is related even to ADD/ADHD disorders (Nigg, 2010).  A staggering declaration made by the National Center for Healthy Housing, after analyzing reports from The USA, Britain, Canada, Australia, France, Italy, West Germany, and New Zealand, suggests that murder could be associated with more severe cases of childhood lead poisoning, (Nevin, 2007).  The urban underprivileged may have been exposed to more lead residue (Cleveland, 2008) from gasoline, paint, and food can solder than their rural counterparts, so much so that traces of lead have been found in the enamel of their teeth (Cleymaet, 1991) (Uryu, 2003), levels of which tripled from 1930’s to the mid 60’s.

As of 2002, more than a million housing units offered shelter to low-income families (earning < $30 K yearly) with children under age six.  Of those, 17% of government-subsidized units had hazards.  Thirty-five percent of all low-income families had hazards.  For families with modestly higher earnings, it’s 19%.  Understandably, the greatest risks appear in dwellings that are antiquated, often also having high lead concentrations in the soil.  Housing in the Northeast had twice the danger of the rest of the country.

What To Do?

Removal of heavy metals, notably lead, mercury and cadmium, is important to body function at the cellular level.  The traditional medical approach to chelation, the process whereby the chelator binds to the metal and carries it away from the body, might use succimer, which is an analogue of dimercaprol, a toxic substance with a small therapeutic range and many adverse side effects.  In a succimer trial sponsored by the National Institute of Environmental Health Sciences that enrolled almost eight hundred children with blood lead levels from 20-40 mcg/dL, the lead values of the study group decreased with succimer, but also did their IQ’s by a single point, which seems insignificant.  But what is significant is that their behavior worsened, as reported on a parent assessment scale, leading investigators to infer that this treatment may not be ideal for children with lead levels in the particular range, citing accompanying decline in tests of cognition and psychological function (Rogan, 2001).  Later study at the University of Cincinnati that followed a like protocol also noted a decrease in blood lead levels, but, too, a lack of benefit for cognitive, learning/memory, attention, and neuromotor skills, drawing researchers to the same conclusion (Dietrich, 2004).

As a chelator, chlorella vulgaris has been found to reduce damage by lead exposure and to maintain the integrity of bone marrow (Queiroz, 2003), while reducing lead levels in blood and tissues and restoring liver function (Queiroz, 2008).  Later study found chlorella to restore the activity of natural killer cells and to reverse the zinc loss caused by lead exposure (Queiroz, 2011).  Ascorbic acid, vitamin C, has been known to handle lead problems since the late 1930’s, when scientists found lead-exposed factory workers to respond to daily doses of vitamin C and to excrete lead in their urine (Holmes, 1939).  Sixty years later, investigators saw lead levels decline as ascorbic acid levels increased in the general population having baseline lead values of 15 mcg/dL or higher (Simon, 1999).  Though both these modalities were shown to reduce lead levels, no commentary about cognitive or behavioral character is retrieved from these studies.  Sadly, lead stored in bone can leach into the blood even after chelation is deemed successful.

Where lead levels are high, trace mineral levels may be low, and probably are.  The earnest and judicious use of minerals that belong in the body may be able to push out those that do not belong and, by virtue of their own properties, rescue the mental and physical domains transgressed upon by lead and other heavy metals.

References

Bakhireva LN, Rowland AS, Young BN, Cano S, Phelan ST, Artyushkova K, Rayburn WF, Lewis J.
Sources of Potential Lead Exposure Among Pregnant Women in New Mexico.
Matern Child Health J. 2012 Feb 24. [Epub ahead of print]

Bellinger DC.
Lead.
Pediatrics. 2004 Apr;113(4 Suppl):1016-22

Bouchard MF, Bellinger DC, Weuve J, Matthews-Bellinger J, Gilman SE, Wright RO, Schwartz J, Weisskopf MG.
Blood lead levels and major depressive disorder, panic disorder, and generalized anxiety disorder in US young adults.
Arch Gen Psychiatry. 2009 Dec;66(12):1313-9.

Carpenter DO, Nevin R.
Environmental causes of violence.
Physiol Behav. 2010 Feb 9;99(2):260-8. Epub 2009 Sep 14.

Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M, Egelhoff JC, Wessel S, Elangovan I, Hornung R, Jarvis K, Lanphear BP.
Decreased brain volume in adults with childhood lead exposure.
PLoS Med. 2008 May 27;5(5):e112.

Chen A, Dietrich KN, Ware JH, Radcliffe J, Rogan WJ.
IQ and blood lead from 2 to 7 years of age: are the effects in older children the residual of high blood lead concentrations in 2-year-olds?
Environ Health Perspect. 2005 May;113(5):597-601.

Aimin Chen, MD, PhD
Improving Behavior of Lead-Exposed Children: Micronutrient Supplementation, Chelation, or Prevention
The Journal of Pediatrics.  Volume 147, Issue 5 , Pages 570-571, November 2005

Chen A, Cai B, Dietrich KN, Radcliffe J, Rogan WJ.
Lead exposure, IQ, and behavior in urban 5- to 7-year-olds: does lead affect behavior only by lowering IQ?
Pediatrics. 2007 Mar;119(3):e650-8

Cleveland LM, Minter ML, Cobb KA, Scott AA, German VF.
Lead hazards for pregnant women and children: part 1: immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do.
Am J Nurs. 2008 Oct;108(10):40-9; quiz 50.

Cleymaet R, Collys K, Retief DH, Michotte Y, Slop D, Taghon E, Maex W, Coomans D.
Relation between lead in surface tooth enamel, blood, and saliva from children residing in the vicinity of a non-ferrous metal plant in Belgium.
Br J Ind Med. 1991 Oct;48(10):702-9.

Dietrich KN, Ware JH, Salganik M, Radcliffe J, Rogan WJ, Rhoads GG, Fay ME, Davoli CT, Denckla MB, Bornschein RL, Schwarz D, Dockery DW, Adubato S, Jones RL; Treatment of Lead-Exposed Children Clinical Trial Group.
Effect of chelation therapy on the neuropsychological and behavioral development of lead-exposed children after school entry.
Pediatrics. 2004 Jul;114(1):19-26.

Holmes HN, Amberg EJ, Campbell K.
VITAMIN C TREATMENT IN LEAD POISONING.
Science. 1939 Apr 7;89(2310):322-3.
http://www.seanet.com/~alexs/ascorbate/193x/holmes-hn-etal_j_lab_clin_med-1939-v23-n11-p1119.html

Houston DK, Johnson MA.
Does vitamin C intake protect against lead toxicity?
Nutr Rev. 2000 Mar;58(3 Pt 1):73-5.

Howard W. Mielke, Sammy Zahran
The urban rise and fall of air lead (Pb) and the latent surge and retreat of societal violence
Environment International. Volume 43, August 2012, Pages 48–55

Jacobs DE, Clickner RP, Zhou JY, Viet SM, Marker DA, Rogers JW, Zeldin DC, Broene P, Friedman W.
The prevalence of lead-based paint hazards in U.S. housing.
Environ Health Perspect. 2002 Oct;110(10):A599-606.

Koike S.
[Low-level lead exposure and children’s intelligence from recent epidemiological studies in the U.S.A. and other countries to progress in reducing lead exposure and screening in the U.S.A].
Nihon Eiseigaku Zasshi. 1997 Oct;52(3):552-61.

Kordas K, Stoltzfus RJ, López P, Rico JA, Rosado JL.
Iron and zinc supplementation does not improve parent or teacher ratings of behavior in first grade Mexican children exposed to lead.
J Pediatr. 2005 Nov;147(5):632-9.

Landrigan PJ, Schechter CB, Lipton JM, Fahs MC, Schwartz J.
Environmental pollutants and disease in American children: estimates of morbidity, mortality, and costs for lead poisoning, asthma, cancer, and developmental disabilities.
Environ Health Perspect. 2002 Jul;110(7):721-8.

Naicker N, Richter L, Mathee A, Becker P, Norris SA.
Environmental lead exposure and socio-behavioural adjustment in the early teens: the birth to twenty cohort.
Sci Total Environ. 2012 Jan 1;414:120-5. Epub 2011 Dec 3.

Nevin R.
How lead exposure relates to temporal changes in IQ, violent crime, and unwed pregnancy.
Environ Res. 2000 May;83(1):1-22.

Nevin R.
Understanding international crime trends: the legacy of preschool lead exposure.
Environ Res. 2007 Jul;104(3):315-36. Epub 2007 Apr 23.

Nie LH, Wright RO, Bellinger DC, Hussain J, Amarasiriwardena C, Chettle DR, Pejović-Milić A, Woolf A, Shannon M.
Blood lead levels and cumulative blood lead index (CBLI) as predictors of late neurodevelopment in lead poisoned children.
Biomarkers. 2011 Sep;16(6):517-24. doi: 10.3109/1354750X.2011.604133. Epub 2011 Aug 9.

Nigg JT, Nikolas M, Mark Knottnerus G, Cavanagh K, Friderici K.
Confirmation and extension of association of blood lead with attention-deficit/hyperactivity disorder (ADHD) and ADHD symptom domains at population-typical exposure levels.
J Child Psychol Psychiatry. 2010 Jan;51(1):58-65. Epub 2009 Nov 23.

Queiroz ML, Rodrigues AP, Bincoletto C, Figueirêdo CA, Malacrida S.
Protective effects of Chlorella vulgaris in lead-exposed mice infected with Listeria monocytogenes.
Int Immunopharmacol. 2003 Jun;3(6):889-900.

Queiroz ML, Torello CO, Perhs SM, Rocha MC, Bechara EJ, Morgano MA, Valadares MC, Rodrigues AP, Ramos AL, Soares CO.
Chlorella vulgaris up-modulation of myelossupression induced by lead: the role of stromal cells.
Food Chem Toxicol. 2008 Sep;46(9):3147-54. Epub 2008 Jul 19.

Queiroz ML, da Rocha MC, Torello CO, de Souza Queiroz J, Bincoletto C, Morgano MA, Romano MR, Paredes-Gamero EJ, Barbosa CM, Calgarotto AK.
Chlorella vulgaris restores bone marrow cellularity and cytokine production in lead-exposed mice.
Food Chem Toxicol. 2011 Nov;49(11):2934-41. Epub 2011 Jul 26.

Rogan WJ, Dietrich KN, Ware JH, Dockery DW, Salganik M, Radcliffe J, Jones RL, Ragan NB, Chisolm JJ Jr, Rhoads GG; Treatment of Lead-Exposed Children Trial Group.
The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead.
N Engl J Med. 2001 May 10;344(19):1421-6.

Schwartz J.
Low-level lead exposure and children’s IQ: a meta-analysis and search for a threshold.
Environ Res. 1994 Apr;65(1):42-55.

Simon JA, Hudes ES.
Relationship of ascorbic acid to blood lead levels.
JAMA. 1999 Jun 23-30;281(24):2289-93.

Tiihonen J, Rossi R, Laakso MP, Hodgins S, Testa C, Perez J, Repo-Tiihonen E, Vaurio O, Soininen H, Aronen HJ, Könönen M, Thompson PM, Frisoni GB.
Brain anatomy of persistent violent offenders: more rather than less.
Psychiatry Res. 2008 Aug 30;163(3):201-12. Epub 2008 Jul 26.

Luisa E. Torres-Sánchez, Gertrud Berkowitz, Lizbeth López-Carrillo, Laura Torres-Arreola, et al
Intrauterine LeadExposure and Preterm Birth
Environmental Research. Volume 81, Issue 4, November 1999, Pages 297–301

Uryu T, Yoshinaga J, Yanagisawa Y, Endo M, Takahashi J.
Analysis of lead in tooth enamel by laser ablation-inductively coupled plasma-mass spectrometry
Anal Sci. 2003 Oct;19(10):1413-6.

Watkins JC, Jane DE.
The glutamate story.
Br J Pharmacol. 2006 Jan;147 Suppl 1:S100-8.

Wright JP, Dietrich KN, Ris MD, Hornung RW, Wessel SD, Lanphear BP, Ho M, Rae MN.
Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood.
PLoS Med. 2008 May 27;5(5):e101.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Anxious About Anxiety?

mid-adult-male-portraitYou’re not anxious about going on vacation or performing a pleasant task. You’re enthusiastic (but not enthused). You could be anxious about going to the dentist or to defend your last income tax return. Here, you’re entertaining a feeling of dread or apprehension, probably lacking clear justification.  Anxiety results from a subjective way of looking at a situation in the absence of a clear and actual danger. Of course, the sweating, increased pulse, and tension coupled with self-doubt about being able to handle the matter tell a different story. Sometimes respirations increase, the mouth gets dry and the intestines gurgle. All this is part of a defense mechanism. Anxiety can be particular, such as a panic attack in a crowd of people, in which case the stimulus can be identified. Or it may be generalized, being a long-term experience with no explanation of its cause. Obsessive-compulsory disorder (OCD) is an anxious state characterized by quandaries of uncertainty and compulsions to act. If the act is frustrated, the uncertainty remains and anxiety is intensified. Anxiety is considered a normal, but transient, response to stress, encouraging a person to take action in order to deal with what is perceived to be a difficult situation.

What’s The Risk?

Women are twice as likely as men to become anxious, mostly because of hormones and the archaic expectations that women are supposed to take care of everybody else before themselves. Age plays a minor role, in that OCD, separation anxiety and social phobias that include panic disorder show up in childhood and the teenage years. Early identification and treatment can forestall later problems. Certain environmental factors, such as poverty, separation from family, overly strict parents, family conflicts, anxious family members and lack of support can induce anxiety disorders. That anxiety runs in families is accepted, but it’s not known if the onset is genetic or learned, or both.

Physiologically, anxiety may be prompted by faulty brain chemistry, where an imbalance of serotonin, for instance, may result in irregular moods and emotions. There may be a structural fault, too.  The amygdala is the part of the brain in charge of processing emotional reactions and memory consolidation, including the recollection of fear.  If it’s overactive, this structure will heighten the fear response and increase anxiety in social situations.   Non-structural physical concerns, such as health problems, can cause anxiety.  Diabetes, alcoholism, heart disease, odd sensations that have no apparent cause, and thyroid disease are a few.

How Do I Handle Anxiety?

Besides the traditional psychotherapy practices and anti-anxiety medications, there are a few things you can do to take charge. First, you need to know that withdrawal from a psychoactive drug can cause anxiety. So, weaning from benzodiazepines causes the thing for which you took the drug in the first place. But beta-blockers, typically used for blood pressure control, have no such effect. They’re used off label to control rapid heartbeat, nervousness, trembling voice and shaky hands that accompany anxiety attacks. Alcohol withdrawal causes anxiety in many people.

Alternative approaches to anxiety treatment include things you can do and things you can swallow. Some modalities that require active participation include music therapy, art therapy, aromatherapy and meditation. With these you have to turn the music on, wield a paintbrush, light a candle, or think about pleasant things. But many people are unwilling or unable to be so engaged because of time constraints, family and job obligations, or simple faineance. Deglutition is the answer.

Options to psychological interventions for anxiety were sought in order to overcome limitations on time and resources. Because of adverse side-effects, alternatives to anxiolytic drugs also were explored. There is a shrub from the South Pacific islands that’s been used for centuries to calm the nerves, Piper methysticum, commonly known as kava kava. In a meta-analysis performed by the Cochrane Database at England’s Exeter University, researchers found that anxious subjects who took kava extract as a sole constituent in their treatment experienced a substantial reduction in symptoms compared to those taking a placebo (Pittler, 2000, 2003). One of the differences between a natural substance and a synthetic one is the time it takes to demonstrate effectiveness.  With a natural substance—in this example, herbal—you get the active ingredient and all the supportive components of the plant. Many enjoy an unexplainable synergy.  With a synthetic one—a drug—you get an isolated chemical that is not toned down by collaborative elements. Although earlier study found kava to be effective at taming anxious moments, it took eight weeks for kava’s superiority to placebo to be displayed (Volz, 1997).

Benzodiazepines are the drugs commonly used to treat anxiety. Their side effects, besides excessive drowsiness and decreased alertness, include paradoxical consequences, such as aggression, impulsivity, and irritability. Cognitive impairment and tolerance can result, as well. Tapering off these medications requires deliberation and a watchful eye. Using kava kava during such an ordeal, patients who were weaned from the drugs while being introduced to the herbal showed good tolerance and improved symptoms over a period of two weeks in a five-week trial in Germany (Malsch, 2001).

Generalized anxiety disorder has responded well to another folk remedy, passion flower. In a study comprising three dozen individuals, half received passion flower plus placebo and half received a benzodiazepine plus placebo in a one-month trial. The outcome showed both the herb and the drug to be effective in controlling anxiety symptoms. The drug, with rapid onset of action, impaired job performance (Akhondzadeh, 2001). The herb did not. Pharmacologically, extracts of the upper parts of the passion flower plant are most dynamic (Dhawan, 2001).

If you’ve taken fish oil for heart and brain health, that’s good. It’s been discovered that low levels of omega-3 fatty acids play a significant role in a number of mental irregularities (Buydens-Branchley, 2008) and that mood disorders respond especially well to omega-3 supplementation, with EPA getting better press than its companion, DHA (Ross, 2007). With a ratio of 3 to I, EPA to DHA, a fish oil product called Kirunal appears more than adequate to satisfy the mono- or adjunctive therapy approach in treating mood anomalies. For decades it’s been given that omega-3 fats are effective in the treatment of major depressive disorders, so it is reasonable to submit that they be likewise in anxiety disorders (Ross, 2009). If the presence of a substance yields a specific result, then the absence of that substance should yield the opposite. A deficit of n-3 fats has been identified in the red cell membranes of anxious persons (Greena, 2006), specifically those with social anxieties. Overall, it’s been proposed that human foods be supplemented with omega-3 fats as a strategy to improve behaviors and cognitive functions (Vinot, 2011). This makes one wonder if the education community needs to sit up and take notice. If that’s an inflammatory statement, n-3 supplementation can ameliorate that while reducing self-induced anxiety (Kiecolt-Glaser, 2011).

A relative newcomer on the anti-anxiety supplement stage is curcumin, the active ingredient of the turmeric spice common to Southern Asian and Middle Eastern cuisine.  Known predominantly as an anti-inflammatory agent, curcumin was found to have antidepressant like activity similar to tricyclic antidepressants, such as fluoxetine and imipramine (Sanmukhani, 2011). Because it is a natural substance, doses of curcumin used in an Indian trial were extraordinarily high, at 100 mg per kilogram of body weight, which equates to about 6,800 mg (6.8 grams) for a 150-pound person. Lesser dosages, from 10 to 80 mg/kg, demonstrated a positive effect on serotonin and dopamine activity, acting similarly to commonly prescribed drugs (Kulkami, 2008).

If you maintain a healthy diet, making sure to get the full array of macro and micro minerals, especially magnesium and zinc, as well as sufficient B vitamins, focusing on B 12, you’ll be able to avoid at least one cause of anxiety. Cutting back on alcohol and caffeine, and getting ample sleep are others. A caveat: before embarking on a supplement regimen to address anxiety, check with a healthcare professional to look for interactions with medicines and foods.

References

Andreatini R, Sartori VA, Seabra ML, Leite JR.
Effect of valepotriates (valerian extract) in generalized anxiety disorder: a randomized placebo-controlled pilot study.
Phytother Res. 2002 Nov;16(7):650-4.

Akhondzadeh S, Naghavi HR, Vazirian M, Shayeganpour A, Rashidi H, Khani M.
Passionflower in the treatment of generalized anxiety: a pilot double-blind randomized controlled trial with oxazepam.
J Clin Pharm Ther. 2001 Oct;26(5):363-7.

Buydens-Branchey L, Branchey M.
n-3 polyunsaturated fatty acids decrease anxiety feelings in a population of substance abusers.
J Clin Psychopharmacol. 2006 Dec;26(6):661-5.

Buydens-Branchey L, Branchey M, Hibbeln JR.
Associations between increases in plasma n-3 polyunsaturated fatty acids following supplementation and decreases in anger and anxiety in substance abusers.
Prog Neuropsychopharmacol Biol Psychiatry. 2008 Feb 15;32(2):568-75. Epub 2007 Nov 1.

Dhawan K, Kumar S, Sharma A.
Anti-anxiety studies on extracts of Passiflora incarnata Linneaus.
J Ethnopharmacol. 2001 Dec;78(2-3):165-70.

Dhawan K, Kumar S, Sharma A.
Anxiolytic activity of aerial and underground parts of Passiflora incarnata.
Fitoterapia. 2001 Dec;72(8):922-6.

Ernst E.
The risk-benefit profile of commonly used herbal therapies: Ginkgo, St. John’s Wort, Ginseng, Echinacea, Saw Palmetto, and Kava.
Ann Intern Med. 2002 Jan 1;136(1):42-53.

Ernst E.
Herbal remedies for anxiety – a systematic review of controlled clinical trials.
Phytomedicine. 2006 Feb;13(3):205-8. Epub 2005 Aug 15.

G. Fontani, F. Corradeschi, A. Felici, F. Alfatti, S. Migliorini, L. Lodi
Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects
European Journal of Clinical Investigation. Vol 35, Iss 11, pages 691–699, Nov 2005

Pnina Greena, Haggai Hermeshb, Assaf Monselisec, Sofi Marom, Gadi Presburger, Abraham Weizman
Red cell membrane omega-3 fatty acids are decreased in nondepressed patients with social anxiety disorder
European Neuropsychopharmacology. Feb 2006; 16(2): 107-113

Harauma A, Moriguchi T.
Dietary n-3 fatty acid deficiency in mice enhances anxiety induced by chronic mild stress.
Lipids. 2011 May;46(5):409-16. Epub 2011 Feb 7.

Jadoon A, Chiu CC, McDermott L, Cunningham P, Frangou S, Chang CJ, Sun IW, Liu SI, Lu ML, Su KP, Huang SY, Stewart R.
Associations of polyunsaturated fatty acids with residual depression or anxiety in older people with major depression.
J Affect Disord. 2012 Feb;136(3):918-25. Epub 2011 Nov 21.

Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R.
Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial.
Brain Behav Immun. 2011 Nov;25(8):1725-34. Epub 2011 Jul 19.

Kinrys G, Coleman E, Rothstein E
Natural remedies for anxiety disorders: potential use and clinical applications.
Depress Anxiety. 2009;26(3):259-65.

Kulkarni SK, Bhutani MK, Bishnoi M.
Antidepressant activity of curcumin: involvement of serotonin and dopamine system.
Psychopharmacology (Berl). 2008 Dec;201(3):435-42. Epub 2008 Sep 3.

Lakhan SE, Vieira KF.
Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review.
Nutr J. 2010 Oct 7;9:42.

Malsch U, Kieser M.
Efficacy of kava-kava in the treatment of non-psychotic anxiety, following pretreatment with benzodiazepines.
Psychopharmacology (Berl). 2001 Sep;157(3):277-83.

McBride S, Graydon J, Sidani S, Hall L.
The therapeutic use of music for dyspnea and anxiety in patients with COPD who live at home.
J Holist Nurs. 1999 Sep;17(3):229-50.

Pittler MH, Ernst E.
Efficacy of kava extract for treating anxiety: systematic review and meta-analysis.
J Clin Psychopharmacol. 2000 Feb;20(1):84-9.

Pittler MH, Ernst E.
Kava extract for treating anxiety.
Cochrane Database Syst Rev. 2003;(1):CD003383.

Ross BM, Seguin J, Sieswerda LE.
Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid?
Lipids Health Dis. 2007 Sep 18;6:21.

Brian M. Ross
Omega-3 polyunsaturated fatty acids and anxiety disorders
Prostaglandins, Leukotrienes and Essential Fatty Acids. Nov 2009; 81(5): 309-312

Saeed SA, Bloch RM, Antonacci DJ.
Herbal and dietary supplements for treatment of anxiety disorders.
Am Fam Physician. 2007 Aug 15;76(4):549-56.
Sanmukhani J, Anovadiya A, Tripathi CB.
Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study.
Acta Pol Pharm. 2011 Sep-Oct;68(5):769-75.

Song C, Li X, Leonard BE, Horrobin DF
Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress, and inflammatory responses in rats.
J Lipid Res. 2003 Oct;44(10):1984-91. Epub 2003 Jul 1.

Vinot N, Jouin M, Lhomme-Duchadeuil A, Guesnet P, Alessandri JM, Aujard F, Pifferi F.
Omega-3 fatty acids from fish oil lower anxiety, improve cognitive functions and reduce spontaneous locomotor activity in a non-human primate.
PLoS One. 2011;6(6):e20491. Epub 2011 Jun 7.

Volz HP, Kieser M.
Kava-kava extract WS 1490 versus placebo in anxiety disorders–a randomized placebo-controlled 25-week outpatient trial.
Pharmacopsychiatry. 1997 Jan;30(1):1-5.

tYehuda S, Rabinovitz S, Mostofsky DI.
Mixture of essential fatty acids lowers test anxiety.
Nutr Neurosci. 2005 Aug;8(4):265-7.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

How Balanced Are You?

balancing-actYour checkbook might be. Your diet should be. If you walk a fine line, you must be. The national budget isn’t. Mental stability might be. Balanced, that is. Physical equilibrium, called equilibrioception among the experts, is what we mean here. It’s that state required for walking or standing, and is achieved by a complex interplay of opposing sets of muscles. That—opposition—is a good thing because, if muscles all pulled in the same direction, nothing would get done and you really couldn’t get up after a fall.

In order to maintain balance, the eyes, ears and sense of place work together. The eyes identify where you are and your relationship to your surroundings. The ears contain the vestibular system, in which the semi-circular canals detect rotational movement, and the otoliths (also called statoliths) that send messages of linear motion to the brain. Interestingly, the “-lith” suffix means “stone,” so we really do have rocks in our heads. In this case they’re tiny granules of calcium carbonate that impinge upon the nerve fibers connected to the brain’s center for balance, the cerebellum. The cerebellum works like a computer, continuously comparing actual movement of a muscle group with the motions intended by the motor cortex. Input comes from the eyes. The sense of place is called proprioception, which is sensing the positions of parts of the body in relation to each other. It’s this system that allows you to look at the pencil you laid on the table and to retrieve it without having to look back at the table. It’s this system that lets a person know where his feet are in relation to the rest of his body as he looks at a scene outside the house and then turns to go back to the kitchen. It helps you to put one foot in front of the other when you walk, in the direction you want to go, without your torso going elsewhere.

In walking, our motions emulate an upside down pendulum, hesitating at the peak of its arc before using its stored energy to swing back again. We pivot on the foot that’s on the floor and then thrust our center of balance forward. When the front foot hits the floor, the floor pushes back, slowing us down, which continues as we rise up on that foot to the top of our arc. At that point, we fall (in truth) forward into the next step, and we accelerate again. None of this is energy efficient. It takes about a third of the energy we consume to perform this acrobatic extravaganza. In the meanwhile, muscles are pulling against each other, wasting heat. The imperceptible pause between motions causes a loss of potential energy. During this interval we are actually falling. It’s the brain-as-computer that prevents a mishap. The optimum speed for walking, by the way, is about three miles an hour.

If any of the players in this orchestration malfunction or become impaired, things become unpredictable. This can creep up on us as we age, often without our knowledge and always without our sanction, and set the stage for falls, the leading cause of injury-related visits to the ER, and the primary cause of accidental deaths in people older than 65. It only worsens with advanced age, accounting for 70 percent of accidental deaths in those over 75 (Burt, 1998). Falls and concomitant instability are markers of poor health and declining function, and may signal the presence of acute illnesses that include pneumonia, urinary tract infections or the exacerbation of a chronic condition. Although most falls are not lethal or significantly injurious, they have a psychological side that instills a fear of falling and an increase in self-restriction of activity. This can lead to dependence and institutionalization, followed by a greater risk of falling. What a vicious circle!

The factors that increase the risk for falls among the elderly may revolve around an attitude that pushes the envelope of independence. Seniors are less likely to ask for help in their quest to test their physical boundaries, as their communications skills wane in the golden years (Haines, 2012). Aside from acute or chronic illnesses, using a walker, living alone, being housebound, or being cognitively challenged add to the list of risk factors, which also includes polypharmacy, sensory deficits and being Caucasian (Fuller, 2000). The time to prevent falls begins at a younger age, when flexibility still remains and exercise is doable. An even simpler preventive step is taking vitamin D, a sterol-like compound that reduces risk for falling by a substantial margin (Bischoff-Ferrari, 2004) (Fosnight, 2008) (Bischoff-Ferrari, 2009).

A simple, low-stress exercise that has powerful benefits on physical condition and one that can substantially reduce the risk for falls is Tai Chi Chuan, an ancient Chinese modality that offers relaxation in the process of conditioning. Although considered a martial art, its moderate intensity has considerable positive effect on balance, flexibility and cardiovascular fitness (Hong, 2000), while fine tuning strength and mental control (Li, 2001). As with any exercise regimen, there is the matter of compliance/adherence. Among the elderly, compliance is a serious issue, even after having started a supervised home exercise program perscribed by their doctor (Forkan, 2006). There seem to be more barriers than motivators. From “I don’t have the time,” through “It’s no fun,” to “I’m afraid of getting hurt,” excuses abound (CDC, 1999). Forcing oneself to recruit the energy presently in short supply will help to guarantee the energy needed to continue with an exercise program.

Physical activity that requires standing, reaching, turning and bending, such as occur in housework, cooking and shopping, can improve balance and proprioception. If you think this is sissy stuff, challenge a domestic engineer to a heel-to-toe straight-line race across the family room. One foot directly in front of the other, now, heel touching the toe, no cheating. Of course, if this exercise is part of your daily routine…

The task at hand and the environment in which it is to be performed play a role in keeping one’s balance. Have you ever seen a pro football player run sideways through an obstacle of old tires during practice?  Not that you should try this on the driveway, but at least you should try doing something that’s not common to your comfort zone, like yoga or dancing or aerobics or using a balance ball or standing on one foot with eyes shut or just standing on your toes with eyes closed or doing something, anything to keep yourself off the floor unintentionally. Regarding aging, moving from zero to 60 happens a lot faster than you think. You might not be able to change that, but you can modify the ride.

References

Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB.
Effect of Vitamin D on falls: a meta-analysis.
JAMA. 2004 Apr 28;291(16):1999-2006.

H A Bischoff-Ferrari, B Dawson-Hughes, H B Staehelin, J E Orav, A E Stuck, R Theiler, J B Wong, A Egli, D P Kiel, J Henschkowski
Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials
BMJ. Oct 2009;339:b3692

Burt CW, Fingerhut LA.
Injury visits to hospital emergency departments: United States, 1992-95.
Vital Health Stat 13. 1998 Jan;(131):1-76.

Centers for Disease Control
http://www.cdc.gov/physicalactivity/everyone/getactive/barriers.html
Content in the “Personal Barriers” section was taken from Promoting Physical Activity: A Guide for Community Action (USDHHS, 1999).

Olivier A. Coubard
Fall prevention modulates decisional saccadic behavior in aging
Front Aging Neurosci. 12 Jul 2012; 4: 18.

Forkan R, Pumper B, Smyth N, Wirkkala H, Ciol MA, Shumway-Cook A.
Exercise adherence following physical therapy intervention in older adults with impaired balance.
Phys Ther. 2006 Mar;86(3):401-10.

Fosnight SM, Zafirau WJ, Hazelett SE.
Vitamin D supplementation to prevent falls in the elderly: evidence and practical considerations.
Pharmacotherapy. 2008 Feb;28(2):225-34.

GEORGE F. FULLER, COL, MC, USA,
Falls in the Elderly
Am Fam Physician. 2000 Apr 1;61(7):2159-2168.

Haines TP, Lee DC, O’Connell B, McDermott F, Hoffmann T.
Why do hospitalized older adults take risks that may lead to falls?
Health Expect. 2012 Nov 29. doi: 10.1111/hex.12026. [Epub ahead of print]

Hong Y, Li JX, Robinson PD.
Balance control, flexibility, and cardiorespiratory fitness among older Tai Chi practitioners.
Br J Sports Med. 2000 Feb;34(1):29-34.

Hui EK, Rubenstein LZ.
Promoting physical activity and exercise in older adults.
J Am Med Dir Assoc. 2006 Jun;7(5):310-4.

Frances E Huxham1 Patricia A Goldie and Aftab E Patla
Theoretical considerations in balance assessment
Australian Journal of Physiotherapy 2001 Vol. 47:  89-100

James Oat Judge, MD
Balance training to maintain mobility and prevent disability
American Journal of Preventive Medicine. 25(3), Suppl 2; Oct 2003: 150-156

Li JX, Hong Y, Chan KM.
Tai chi: physiological characteristics and beneficial effects on health.
Br J Sports Med. 2001 Jun;35(3):148-56.

Yvonne L. Michael, ScD, MS, Jennifer S. Lin, MD, MCR, Evelyn P. Whitlock, MD, MPH, Rachel Gold, PhD, MPH, Rongwei Fu, PhD Elizabeth A. O’Connor, PhD, Sarah P. Zuber, MSW, Tracy L. Beil, MS, Kevin W. Lutz, MFA
Interventions to Prevent Falls in Older Adults: An Updated Systematic Review
AHRQ Publication No. 11-05150-EF-1. December 2010

Michael YL, Whitlock EP, Lin JS, Fu R, O’Connor EA, Gold R; US Preventive Services Task Force.
Primary care-relevant interventions to prevent falling in older adults: a systematic evidence review for the U.S. Preventive Services Task Force.
Ann Intern Med. 2010 Dec 21;153(12):815-25.

Schutzer KA, Graves BS.
Barriers and motivations to exercise in older adults.
Prev Med. 2004 Nov;39(5):1056-61.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Stress and Childhood Obesity

weigh-inBeing a kid doesn’t necessarily mean having a carefree life, yet that’s how most adults view childhood. Because kids don’t have jobs, bills to pay, and children to raise what could they possibly have to worry about? More than we realize. Even the very young among us have stressors, slight though they may be. Stress is a function of the demands we face and our ability to handle them. Often it comes from outside sources. You know—family, job, friends, school, and expectations. Sometimes stress comes from inside, related to what we think we should do compared to what we actually do, say or think.

Today, kids have to learn scores of times more information than their parents did at the same age. That we can blame on an electronic era. And they have to learn these things in the same allotted time. Preschoolers get stressed when their moms leave them at daycare. As they get older, kids are pressured by academics and social position. After all, they need to fit in. Their lives get so hectic they seldom have time for themselves, for creative play, or even for relaxation. They are overscheduled with activities that would tax even the adult mind. Disturbing images on TV, news of wars, terrorism and natural disasters, and concerns for personal and family safety add to the burden. Illness, death and divorce don’t help.

All stressors are not created equal, and all people do not respond to stress the same way. Children often learn to handle stress from their parents. Sometimes that’s good; sometimes not. The idea that, “If it doesn’t kill me, it’ll make me stronger,” doesn’t apply to youngsters who’ve not yet developed a coping mechanism. What does this have to do with obesity, a childhood plague that’s more than doubled in the last few decades?  Lots.

A person’s reaction to stress will likely invoke the fight-or-flight (-or freeze) response as the primary means of dealing with a novel situation perceived as threatening. Children who overreact to stress will manufacture more cortisol than the body can dump, and that’s where the problem begins—emotional eating (Michels, 2012). Cortisol is a steroid hormone made by the adrenal glands, released in response to stress. Its main job is to increase blood sugar to power the fight-flight machinery. Cortisol counteracts insulin and contributes to insulin resistance (Goran, 2010) by lowering glucose transport to the cell membrane. Small increases in cortisol can provide a quick burst of energy in an emergency. At the same time it can heighten memory, briefly but powerfully enhance immunity and lower sensitivity to pain. But the return to normal is needed lest the body idle at high rpm’s. With our high-stress culture that has become the norm…chronic stress. That eventually induces impairment of cognitive function, suppresses thyroid activity, throws blood sugar out of whack, menaces bone density, elevates blood pressure, and actually lowers immune responses. And it increases deposition of abdominal fat, setting the stage for metabolic syndrome, depressed affect (Endocrine Society, 2009) (Dockray, 2009) and cardiovascular entanglement, even at a young age.

Children’s biological response to stressors was examined recently by researchers from Penn State and Johns Hopkins Universities.  A group of pre-teens was assigned public speaking and mathematical tasks with little preparation time allowed for either. Cortisol content of their saliva was measured before and after. Following the assignment, the children were offered an array of snack foods regardless of their hunger status. The amount of calories they consumed varied, but those with the highest body mass indexes, who also had the highest cortisol levels, consumed more calories, even in the absence of hunger, than did those with lower cortisol levels. The outcome suggests that children with poor response to stress are at risk for becoming overweight or obese (Francis, 2013). Other factors that contribute to eating in the absence of hunger include poverty, living in a violent environment and food insecurity.

The determination of childhood obesity needs to be made on an individual basis, not from a chart developed by an insurance company that focuses on only one ethnicity or population. Anthropometric measurements and family history need to be included in an evaluation. Pathologies need to be ruled out, genetics must be considered, and psychosocial factors scrutinized. The comorbidities of obesity are varied and many, and their prophylaxis calls for early intervention, some of which transcends diet. Overweight children face the same health conditions as their parents, with hypertension, discordant lipid panels, abnormal glucose levels, and elevated inflammation markers among them. Lifestyle changes, where parents are the managers, may be all that is needed. This may include dietary interventions that eliminate simple carbohydrates, especially sugars and refined starches common to the foods kids like the most. These foods will spike insulin, which will spike cortisol, which will encourage eating, which will add pounds. Avoiding pharmaceutical anorectic agents is strongly encouraged.

Mental stress is associated with emotional eating, which typically ignores healthy dietary patterns (Michels, 2013). Cortisol levels peak in the morning, but can remain elevated in stressful surroundings. Admittedly, some of those surroundings are beyond a parent’s control, so coping mechanisms are helpful. Without being a helicopter parent, it’s possible to create a comfortable atmosphere for a child, even when he is away from you. Teaching coping skills by example starts early. Believe it or not, kids watch, listen and emulate. There are three-year-olds with vocabularies that would make you wince. If kids can learn to be tense and confrontational, they can also learn to relax and to take things in stride.

Limiting cortisol manufacture might be as easy as increasing magnesium in thediet. How?  Vegetables. Essential fatty acids, music therapy and phospholipids,and even vitamin C and tea have been shown to curtail cortisol release (Rains,2011) (Arent, 2010) (Peters, 2001).

References

Adam TC, Hasson RE, Ventura EE, Toledo-Corral C, Le KA, Mahurkar S, Lane CJ, Weigensberg MJ, Goran MI.
Cortisol is negatively associated with insulin sensitivity in overweight Latino youth.
J Clin Endocrinol Metab. 2010 Oct;95(10):4729-35

Shawn M Arent, Meghan Senso, Devon L Golem and Kenneth H McKeever
The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study
J Int Soc Sports Nutr. 2010 Feb 23;7(1):11.

Björntorp P, Rosmond R.
Obesity and cortisol.
Nutrition. 2000 Oct;16(10):924-36.

Björntorp P.
Do stress reactions cause abdominal obesity and comorbidities?
Obes Rev. 2001 May;2(2):73-86.

Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, Robinson TN, Scott BJ, St Jeor S, Williams CL.
Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment.
Circulation. 2005 Apr 19;111(15):1999-2012.

Dimitriou T, Maser-Gluth C, Remer T.
Adrenocortical activity in healthy children is associated with fat mass.
Am J Clin Nutr. 2003 Mar;77(3):731-6.

Samantha Dockray, Ph.D., Elizabeth J. Susman, Ph.D., and Lorah D. Dorn, Ph.D.
Depression, Cortisol Reactivity and Obesity in Childhood and Adolescence
J Adolesc Health. 2009 October; 45(4): 344–350.

Endocrine Society
Symptoms of depression in obese children linked to elevated cortisol
Friday, June 12, 2009
http://www.endo-society.org/media/ENDO-09/Research/Symptomsofdepressioninobesechildren.cfm

Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH.
Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study.
J Pediatr. 2007 Jan;150(1):12-17.e2.

L.A. Francis, D.A. Granger, E.J. Susman
Adrenocortical regulation, eating in the absence of hunger and BMI in young children Appetite.
Volume 64, 1 May 2013, Pages 32–38

Golf SW, Bender S, Grüttner J.
On the significance of magnesium in extreme physical stress.
Cardiovasc Drugs Ther. 1998 Sep;12 Suppl 2:197-202.

Gonçalves H, González DA, Araújo CP, Muniz L, Tavares P, Assunção MC, Menezes AM, Hallal PC.
Adolescents’ perception of causes of obesity: unhealthy lifestyles or heritage?
J Adolesc Health. 2012 Dec;51(6 Suppl):S46-52.

Jahng JW.
An animal model of eating disorders associated with stressful experience in early life.
Horm Behav. 2011 Feb;59(2):213-20.

Konttinen H, Männistö S, Sarlio-Lähteenkorva S, Silventoinen K, Haukkala A.
Emotional eating, depressive symptoms and self-reported food consumption. A population-based study.
Appetite. 2010 Jun;54(3):473-9.

Michels N, Sioen I, Braet C, Eiben G, Hebestreit A, Huybrechts I, Vanaelst B, Vyncke K, De Henauw S.
Stress, emotional eating behaviour and dietary patterns in children.
Appetite. 2012 Dec;59(3):762-9.

Michels N, Sioen I, Braet C, Huybrechts I, Vanaelst B, Wolters M, De Henauw S.
Relation between salivary cortisol as stress biomarker and dietary pattern in children.
Psychoneuroendocrinology. 2013 Jan 15. pii: S0306-4530(12)00454-4

National Center for Health Statistics. Health, United States, 2011: With Special Features on Socioeconomic Status and Health. Hyattsville, MD; U.S. Department of Health and Human Services; 2012.

Ogden CL, Carroll MD, Kit BK, Flegal KM.
Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010.
JAMA. 2012 Feb 1;307(5):483-90. doi: 10.1001/jama.2012.40. Epub 2012 Jan 17.

Pervanidou P, Chrousos GP.
Stress and obesity/metabolic syndrome in childhood and adolescence.
Int J Pediatr Obes. 2011 Sep;6 Suppl 1:21-8. doi: 10.3109/17477166.2011.615996.

Pervanidou P, Chrousos GP.
Metabolic consequences of stress during childhood and adolescence.
Metabolism. 2012 May;61(5):611-9. doi: 10.1016/j.metabol.2011.10.005. Epub 2011 Dec 5.

Peters EM, Anderson R, Nieman DC, Fickl H, Jogessar V.
Vitamin C supplementation attenuates the increases in circulating cortisol, adrenaline and anti-inflammatory polypeptides following ultramarathon running.
Int J Sports Med. 2001 Oct;22(7):537-43.

Piroli GG, Grillo CA, Reznikov LR, Adams S, McEwen BS, Charron MJ, Reagan LP.
Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus.
Neuroendocrinology. 2007;85(2):71-80.

Rains TM, Agarwal S, Maki KC.
Antiobesity effects of green tea catechins: a mechanistic review.
J Nutr Biochem. 2011 Jan;22(1):1-7.

Sen Y, Aygun D, Yilmaz E, Ayar A.
Children and adolescents with obesity and the metabolic syndrome have high circulating cortisol levels.
Neuro Endocrinol Lett. 2008 Feb;29(1):141-5.

Soros A, Zadik Z, Chalew S.
Adaptive and maladaptive cortisol responses to pediatric obesity.
Med Hypotheses. 2008 Sep;71(3):394-8.

Van Cauter E, Knutson KL.
Sleep and the epidemic of obesity in children and adults.
Eur J Endocrinol. 2008 Dec;159 Suppl 1:S59-66.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

What Gets YOU Inflamed?

knee-inflammationAre you an adult? Would you prefer the pound(s) of cure to the ounce of prevention? One of the sad commentaries about adulthood is that we don’t take care of ourselves until something hurts, the detection of which relies on the nervous system. The nervous system is plastic, meaning that it exhibits a wide range of responses according to different conditions. The perception of pain depends on more than one factor, the environment included. With inflammation, however, there exists a hypersensitivity state that makes us aware of what’s going on. This realization is called nociception, involving a network that identifies a noxious condition that evokes responses ranging from mild to severe. Once the pain message is recognized by the nervous system it registers as an “ouch.” The greater the intensity of the stimulus, the greater is the perception of pain. In some cases, no external trigger is needed, such as one would experience with arthritis pain.

Inflammation is the body’s attempt at self-protection, the intention of which is to remove the harmful stimuli, including damaged cells, irritants or pathogens. If the stimulus comes from outside, it can be removed, although pain may linger. If it comes from inside, the body is left to its own devices. In either instance, tissue repair is the ultimate goal. To our dismay, inflammation may beget further inflammation in a self-perpetuating cascade. This occurs because of cellular alterations that cause mediator chemicals to be released and certain white cells, called macrophages, to become activated. The job of the macrophage is to swallow (-phage) the debris that comes from, or causes, tissue damage. Without inflammation, infections and wounds would never heal. In fact, too much anti-inflammatory medication, such as cortisone, slows wound healing (Goforth, 1980). The innate immunity with which we were born is always at the ready to start the inflammatory cascade and to bring healing.

Signs of overt inflammation include pain, redness, immobility (as in loss of function), swelling, and heat (more blood to the area makes it feel warm). Covert inflammation, occurring with internal organs, does not necessarily present with all these signs. Pain arises when swelling pushes on nerves, but sometimes the brain gets used to it and ignores the stimulus. The risk for inflammatory conditions rises with weight gain, as determined by an increase in white blood cells. Regardless of body mass index, C-reactive protein and homocysteine are markers for the presence of inflammatory state, which is at the center of many disorders, from arthritis, through Crohn’s disease, to various allergies and vitamin deficiencies.

Treatment for inflammation abounds in the world of allopathic medicine. Most of us know about NSAIDS, non-steroidal anti-inflammatory drugs, among which Tylenol is not, but aspirin, naproxen and ibuprofen are. Then, there are the corticosteroids—or just plain steroids—that are naturally made by the body in the adrenal glands. But these guys, given as drugs, prevent phospholipid release, and that undermines the activity of eosinophils, which are designed to fight back against allergy, for example, by releasing histamine.

Of the alternative modalities to address inflammation, ginger has accrued quite a following. For hundreds of years it’s been used to treat gastric distress, including dyspepsia and constipation. Recent research points to ginger’s role as an anti-inflammatory agent in the prevention of colon cancer, where inflammation has been identified as a precursor to the disease (Zick, 2011), the markers of which are pro-inflammatory prostaglandins—primarily PGE2—produced by cyclooxygenase (COX) as an early event in the course of the condition (Jiang, 2012).

In a British examination of pain studies, those suffering from osteoarthritis, dysmenorrhea, and acute muscle pain had been administered ginger as the sole treatment. Though additional rigorous trials are anticipated, these subjects reported a reduction in pain, as cited on subjective assessment tools (Terry, 2011). Even before interest in alternative medicine was accelerated to its present status, scientists scrutinized ginger’s reputation in the Ayurvedic community among people treated with the herb for rheumatic concerns, finding efficacy that paralleled traditional interventions (Srivastava, 1989). Applying oral powdered ginger to generalized musculoskeletal discomfort, Danish physicians realized that the safety factor of ginger far exceeded that of any known drugs, while presenting significant efficacy in the relief of pain and swelling via the inhibition of pro-inflammatory prostaglandins (Srivastava, 1992).

By sequestering these incendiary prostaglandins (PG’s), ginger proves itself to be on a par with NSAIDS, minus the concerns of adverse side effects. Similar to prostaglandins in promoting physical aberrations are leukotrienes, products of an enzyme called lipoxygenase (LOX), like COX an offspring of arachidonic acid metabolism. Leukotrienes generally work within the immune system, while PG’s almost always play a role in pure inflammation and pain. (There are beneficent PG’s, by the way.)  Leukotrienes are signaling molecules that call immune cells to the site of infiltration, as from airborne allergens. Bluntly, ginger suppresses the synthesis of leukotrienes (Grzanna, 2005), a property that separates it from NSAIDS. Other of ginger’s attributes point to an anti-oxidant character in the interruption of free radical generation (Ali, 2008), which is helpful in the fight against allergens and pain.

Nitric Oxide (NO) is one of the few signaling gases in the body. The smooth muscle that lines blood vessels is told by NO to relax, thus dilating the vessels and lowering blood pressure. In excessive concentrations, though, NO becomes a pro-oxidant as a naturally unstable free radical, especially when made by white cells (monocytes and macrophages)  during their battle against an infective agent. One logistician that maintains regulation of NO is ginger, where it was shown to control white cell activation as part of its job as an anti-inflammatory vehicle (Shimoda, 2010). Modulating inflammation is what ginger does, and not so gingerly, at that.

References

Ali BH, Blunden G, Tanira MO, Nemmar A.
Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research.
Food Chem Toxicol. 2008 Feb;46(2):409-20. Epub 2007 Sep 18.

ltman RD, Marcussen KC.
Effects of a ginger extract on knee pain in patients with osteoarthritis.
A Arthritis Rheum. 2001 Nov;44(11):2531-8.

Drozdov VN, Kim VA, Tkachenko EV, Varvanina GG.
Influence of a specific ginger combination on gastropathy conditions in patients with osteoarthritis of the knee or hip.
J Altern Complement Med. 2012 Jun;18(6):583-8. doi: 10.1089/acm.2011.0202.

Frondoza CG, Sohrabi A, Polotsky A, Phan PV, Hungerford DS, Lindmark L.
An in vitro screening assay for inhibitors of proinflammatory mediators in herbal extracts using human synoviocyte cultures.
In Vitro Cell Dev Biol Anim. 2004 Mar-Apr;40(3-4):95-101.

Goforth P, Gudas CJ.
Effects of steroids on wound healing: a review of the literature.
J Foot Surg. 1980 Spring;19(1):22-8.

Grzanna R, Lindmark L, Frondoza CG
Ginger–an herbal medicinal product with broad anti-inflammatory actions.
J Med Food. 2005 Summer;8(2):125-32.

Jiang Y, Turgeon DK, Wright BD, Sidahmed E, Ruffin MT, Brenner DE, Sen A, Zick SM.
Effect of ginger root on cyclooxygenase-1 and 15-hydroxyprostaglandin dehydrogenase expression in colonic mucosa of humans at normal and increased risk for colorectal cancer.
Eur J Cancer Prev. 2012 Dec 6.

Levy AS, Simon O, Shelly J, Gardener M.
6-Shogaol reduced chronic inflammatory response in the knees of rats treated with complete Freund’s adjuvant.
BMC Pharmacol. 2006 Oct 1;6:12.

Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L.
Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury.
FASEB J. 2011 Jan;25(1):358-69.

Ramji, Divya; ho, chi; Huang, Qingron; Rafi, Mohamed; Huang, Mou
Isolation of gingerols and shogaols from ginger and evaluation of their chemopreventive activity on prostate cancer cells and anti-inflammatory effect on 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced mouse ear inflammation
RUcore – Rutgers University Community Repository. 2007
http://mss3.libraries.rutgers.edu/dlr/showfed.php?pid=rutgers-lib:21328

Shen CL, Hong KJ, Kim SW.
Effects of ginger (Zingiber officinale Rosc.) on decreasing the production of inflammatory mediators in sow osteoarthrotic cartilage explants.
J Med Food. 2003 Winter;6(4):323-8.

Sehwan Shima, Sokho Kima, Dea-Seung Choia, Young-Bae Kwonb, Jungkee Kwona
Anti-inflammatory effects of [6]-shogaol: Potential roles of HDAC inhibition and HSP70 induction
Food and Chemical Toxicology. Volume 49, Issue 11, November 2011, Pages 2734–2740

Shimoda H, Shan SJ, Tanaka J, Seki A, Seo JW, Kasajima N, Tamura S, Ke Y, Murakami N.
Anti-inflammatory properties of red ginger (Zingiber officinale var. Rubra) extract and suppression of nitric oxide production by its constituents.
J Med Food. 2010 Feb;13(1):156-62.

Srivastava KC, Mustafa T.
Ginger (Zingiber officinale) and rheumatic disorders.
Med Hypotheses. 1989 May;29(1):25-8.

Srivastava KC, Mustafa T.
Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders.
Med Hypotheses. 1992 Dec;39(4):342-8.

Terry R, Posadzki P, Watson LK, Ernst E.
The use of ginger (Zingiber officinale) for the treatment of pain: a systematic review of clinical trials.
Pain Med. 2011 Dec;12(12):1808-18.

Tripathi S, Maier KG, Bruch D, Kittur DS.
Effect of 6-gingerol on pro-inflammatory cytokine production and costimulatory molecule expression in murine peritoneal macrophages.
J Surg Res. 2007 Apr;138(2):209-13. Epub 2007 Feb 8.

Tripathi S, Bruch D, Kittur DS.
Ginger extract inhibits LPS induced macrophage activation and function.
BMC Complement Altern Med. 2008 Jan 3;8:1. doi: 10.1186/1472-6882-8-1.

Zick SM, Turgeon DK, Vareed SK, Ruffin MT, Litzinger AJ, Wright BD, Alrawi S, Normolle DP, Djuric Z, Brenner DE.
Phase II study of the effects of ginger root extract on eicosanoids in colon mucosa in people at normal risk for colorectal cancer.
Cancer Prev Res (Phila). 2011 Nov;4(11):1929-37.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.