Posts

Supplement Actions & Interactions

spoon-full-of-vitaminsThe potential for vitamin toxicity is real. Most Americans believe that vitamins and other supplements are safe. That’s true if they are used correctly. Too many people still think that if one is good, ten is better. Especially alarming is the scenario in which a well-meaning mother tells her youngster to chew his daily animal-shaped gummy vitamin because it’s good for him and will make him grow to be big and strong, like Daddy.  Junior doesn’t know that ten is not better, climbs up to the counter, struggles to open the bottle, and eats a handful of vitamins. If the vitamins are made from food the worry is minor, but still there. If synthetic, like most, the danger for an adverse reaction is much greater and becomes a medical emergency.  Fat-soluble vitamins have a higher potential for poisoning because they can accumulate in the body, but there is comfort knowing that, even with more than 71,000 vitamin overdose reports to poison control centers in 2010, no one ever died from a vitamin excess (Bronstein, 2011). The actual number is 71,545 out of 2,784,907, representing about 2.5% of all exposures. The medical community that reviewed total toxic exposures ruled vitamins to be safe.
http://www.worldhealth.net/news/safety-vitamins-confirmed.

Antioxidants: Vitamin A
Vitamin A is a group of fat-soluble substances called retinoids, including retinol, retinal, retinoic acid and retinyl esters that are involved in immunity, vision, reproduction, and cellular communication. As an essential component of rhodopsin, vitamin A is critical for vision. Since it supports healthy cell growth and division, it is likewise important to the heart, lungs, kidneys, and other organs. This nutrient exists in two forms. Pre-formed vitamin A is called retinol, found mostly in animal foods and converted to the metabolically active forms known as retinal and retinoic acid. The other form of vitamin A is the provitamin carotenoid, beta-carotene, although other carotenes exist as alpha-carotene and beta-cryptoxanthin, all of which are converted to vitamin A and metabolized to retinal and retinoic acid. All forms of the vitamin are made into micelles and are absorbed by the duodenum. In a cascade of metabolic events, retinol is converted to retinal and then to retinoic acid. Much of the vitamin A from food comes as retinol. About one third of the dietary source comes from plants, especially grains, oils, and green and yellow fruits and vegetables, such as carrots and pumpkin.

Because the liver maintains vitamin A levels within a narrow window, overdose is possible by overzealous supplementation, and can be serious in children. But that does not exempt adults from the hazard. Intake of much more than 1.5 milligrams of supplemental A each day (5000 IU), particularly of preformed vitamin A, can backfire and reduce bone mineral density by as much as 10% in the femur and 6% for the total body, thereby increasing risk for hip fractures (Melhus, 1998). But vitamin A precursors are not totally exculpated (Feskanich, 2002). Observational studies on retinol conclude that total vitamin A intake is more important than the source, whether from supplements or from foods, and that twice the current RDA (3000 IU or 900 mcg for adults) is enough to compromise bone integrity (Crandall, 2004). The Brazilians noted an increase in risk of skeletal fractures when intake of dietary vitamin A from retinol was excessive, as bone resorption was stimulated and bone formation inhibited (Genaro, 2004).

Nutrition Labels Have a Purpose
Good intentions are insufficient to ward off the throes of taking too much of a supplement, whether alone or as part of a multi-vitamin or other complex. This is why you need to read labels of all the supplement bottles you open. If each bottle contains a little bit of the same nutrient, you need to add the numbers to arrive at the value you swallow, lest you take too much and possibly suffer harm. Water-soluble nutrients are not usually the problem; fat-soluble ones are. High doses of vitamin A over long periods of time, regardless of source, can antagonize vitamin K and reduce its effectiveness as a clotting agent and cause internal hemorrhage (Grubbs, 1985). Most people don’t monitor vitamin K intake from supplements. Neither do they watch how many green leafy vegetables they eat to account for vitamin K supply. Except for that prescribed by a medical doctor, high doses of vitamin A means taking more than twice the daily recommendation.

Deficiencies of nutrients often parallel one another. Low zinc levels limit the bioavailability of vitamin A, regardless of how much is ingested (Rahman, 2992).  Iron deficiency is a known cause of anemia. In the absence of ample vitamin A stores, even supplemental iron is inhibited despite its enhanced hematological response by vitamin C (Fishman, 2000). Certain foods can inhibit or facilitate supplemental nutrient uptake and absorption, too. In the presence of fiber, vitamin A absorption is enhanced (Kasper, 1979).

Vitamin A and Your Liver
Because vitamin A is handled by the liver, anything that burdens that organ might contribute to problems down the line. Acetaminophen is notorious for causing liver damage, even fatalities, and  amiodarone, carbamazepine, methotrexate, and a slew of other drugs can cause liver concerns in the presence of excess vitamin A. Taking 25,000 IU of vitamin A daily for several months will turn your eyes and skin yellow and, for a pregnant, woman, can cause birth defects (Hathcock, 1990). Mixing vitamin A, often prescribed for acne, with tetracycline antibiotic prescribed for the same condition can cause intracranial hypertension with resultant headaches, nausea and vomiting, as well as pulsate tinnitus and vision symptoms (Walters, 1981). Heaven forbid you take an Rx blood thinner and overdo the vitamin A at levels greater than 10,000 IU a day.  Vitamin K will be antagonized and hemorrhage becomes a possibility (Hardman, 1996).

When it comes to fat-soluble vitamins, be careful not to overdo it. Although toxicity is relatively rare, is it especially possible in the elderly, chronic alcohol users and those with a genetic predisposition to high cholesterol (Russell, 2000). Avoid taking more than the RDA of pre-formed vitamin A (retinol) during pregnancy, being alert to fortification of food and counting it as part of daily intake. Synthetic derivatives, such as those used to treat skin conditions (Accutane, Retin-A) either orally or topically are no less dangerous merely because they come from a pharmacist. The terms “acetate” and “palmitate” describe preformed vitamin A. Although beta-carotene is safer, use common sense.

References

Alvin C. Bronstein, MD ; Daniel A. Spyker, MD, PhD ; Louis R. Cantilena, Jr, MD, PhD, et al
2010 Annual Report of the American Association of Poison Control Centers ’ National Poison Data System (NPDS): 28th Annual Report
Clinical Toxicology (2011), 49, 910–941


Crandall C.
Vitamin A intake and osteoporosis: a clinical review.
J Womens Health (Larchmt). 2004 Oct;13(8):939-53.


Feskanich D, Singh V, Willett WC, Colditz GA.
Vitamin A intake and hip fractures among postmenopausal women.
JAMA. 2002 Jan 2;287(1):47-54.


Fishman SM, Christian P, West KP.
The role of vitamins in the prevention and control of anaemia.
Public Health Nutr. 2000 Jun;3(2):125-50.


Genaro Pde S, Martini LA.
Vitamin A supplementation and risk of skeletal fracture.
Nutr Rev. 2004 Feb;62(2):65-7.


Grubbs CJ, Hill DL, Farnell DR, Kalin JR, McDonough KC.
Effect of long-term administration of retinoids on rats exposed transplacentally to ethylnitrosourea.
Anticancer Res. 1985 Mar-Apr;5(2):205-9.
Hardman JG, Limbird LL, Molinoff PB, eds. Goodman and Gillman’s The Pharmacological Basis of Therapeutics, 9th ed. New York, NY: McGraw-Hill, 1996.


Hathcock JN.
Metabolic mechanisms of drug-nutrient interactions.
Fed Proc. 1985 Jan;44(1 Pt 1):124-9.


Hathcock JN, Hattan DG, Jenkins MY, McDonald JT, Sundaresan PR, Wilkening VL.
Evaluation of vitamin A toxicity.
Am J Clin Nutr. 1990 Aug;52(2):183-202.


Kasper H, Rabast U, Fassl H, Fehle F.
The effect of dietary fiber on the postprandial serum vitamin A concentration in man.
Am J Clin Nutr. 1979 Sep;32(9):1847-9.


Melhus H, Michaëlsson K, Kindmark A, Bergström R, Holmberg L, Mallmin H, Wolk A, Ljunghall S.
Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture.
Ann Intern Med. 1998 Nov 15;129(10):770-8.


Michaëlsson K, Lithell H, Vessby B, Melhus H.
Serum retinol levels and the risk of fracture.
N Engl J Med. 2003 Jan 23;348(4):287-94.


Allen LH, Peerson JM; Maternal Micronutrient Supplementation Study Group Collaborators (37)
Impact of multiple micronutrient versus iron-folic acid supplements on maternal anemia and micronutrient status in pregnancy.
Food Nutr Bull. 2009 Dec;30(4 Suppl):S527-32


Rahman MM, Wahed MA, Fuchs GJ, Baqui AH, Alvarez JO.
Synergistic effect of zinc and vitamin A on the biochemical indexes of vitamin A nutrition in children.
Am J Clin Nutr. 2002 Jan;75(1):92-8.


Russell RM.
The vitamin A spectrum: from deficiency to toxicity
Am J Clin Nutr. 2000 Apr;71(4):878-84.


Vetrugno M, Maino A, Cardia G, Quaranta GM, Cardia L.
A randomised, double masked, clinical trial of high dose vitamin A and vitamin E supplementation after photorefractive keratectomy.
Br J Ophthalmol. 2001 May;85(5):537-9.


Walters BN, Gubbay SS.
Tetracycline and benign intracranial hypertension: report of five cases.
Br Med J (Clin Res Ed). 1981 Jan 3;282(6257):19-20.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Vitamin C and Mood

oj-drinking-womanFor a long time, emotions and logical thought have been portrayed as competing processes, with emotions depicted as obstacles to effective decision making. On the other hand, emotions and cognitions might work together to determine our behaviors. Whether or not one controls the other is still a question. If puppy dog eyes can influence a decision or alter a mood, well, “Aw, come on. Please?”  The rigidity of doctrine can be tempered by the plasticity of human thought and behavior, right? If so, a good mood can change outcomes, or at least change the behaviors that affect the outcomes.

Despite their best efforts, even positive people get in bad moods. It could be lack of sleep, or maybe being overworked or overwhelmed. Perhaps there is regret for having done something…or having done nothing. Emotional responses happen so quickly that it becomes a challenge to put a space between feeling and doing. Have you ever snapped at someone for no reason? Or fibbed and said you’re feeling great when you really felt like screaming? Maybe it’s time to figure out what’s standing between you and a smile, and to rewrite the story that precipitated the bad mood. The mood is yours. There’s no need to share it.

Nutritional deficiencies, mostly caused by poor diet, play a part in mood. Junk food equates to junk mood. Edible things devoid of nutritional value, washed down with sweetened, flavored and carbonated distilled water can make you feel depressed, irritable and sick. It’s little wonder that short tempers abound. Recent study has confirmed the importance of micronutrients to the expression of mood, and vitamin C is one of them. Hypovitaminosis is a term that describes vitamin deficiency, though most often associated with vitamin D. It happens when the system is unable to absorb the right amount of vitamins from food or supplements, and results in a number of medical conditions, like scurvy, beriberi, or pellagra, among others.

Vitamin C deficit is not very common in the general population, but does show up in cancer patients and in those with conditions that inhibit absorption. Age, poor diet, medications and obesity are contributing factors. The widowed elderly, for example, often do not eat properly because they don’t cook for themselves. Community settings can make a difference in their nutrient balance.

In acute care situations, as in a short-term hospital stay, hypovitaminosis is more common than one might think, and malnutrition of vitamin C (often accompanied by vitamin D) has been linked to mood disturbances and cognitive upset. In these cases, doses as little as 500 mg twice a day resolved issues with psychological distress and irascible mood (Wang, 2013). Because vitamin C is water-soluble, it needs to be replaced regularly. Most animals can make their own. Humans, apes and guinea pigs cannot. Without it, the body cannot make collagen or the neurotransmitter norepinephrine.

It’s not completely clear if hypovitaminosis C results from outright deficiency or from tissue redistribution as part of the acute-phase response. Investigations stand on both sides of the street (Evans-Olders, 2010). This response is an innate body defense during acute illness and involves the increased production of certain blood proteins, appropriately called acute phase proteins. Once activated, these substances cause the release of inflammatory molecules, the most well known being C-reactive protein (CRP), a marker unexpectedly related to mood disorders in the presence of even low-grade inflammation (DeBerardis, 2006) (Luukinen, 2010). Since CRP is also associated with increased risk of cardiovascular involvement, reducing it is a prudent objective on two fronts. Vitamin C was found to be as effective as statin drugs in lowering CRP levels by more than 25% in a study of individuals whose inflammatory markers put them at risk for a cardiac event (Block, 2009). In patients with active disease, such as cancer, intravenous vitamin C was found to have a salutary effect on CRP and pro-inflammatory cytokines (Mikirova, 2012).

Decrease in blood vitamin concentrations is common to the acute-phase response, but is more common because people fail to get the nutrition they need to maintain optimum health. A glass of orange juice just won’t cut it. Not only are mood and cognitive ability worthy of adequate nutrient intake, but also total physiological function. Supplements have been shown to improve mental processing and response to stress, to reduce fatigue, and even to attenuate psychological and physical damage from noise (Angrini, 2012), including high blood pressure (Fernandes, 2011). Vitamin C now has an identified mechanism of activity beyond that of anti-oxidant. It enhances mood.

References

Amr M, El-Mogy A, Shams T, Vieira K, Lakhan S
Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: a randomized, double-blind, placebo-controlled pilot study.
Nutr J. 2013 Mar 9;12:31.

Angrini MA, Leslie JC.
Vitamin C attenuates the physiological and behavioural changes induced by long-term exposure to noise.
Behav Pharmacol. 2012 Apr;23(2):119-25.

Baumann H, Gauldie J.
The acute phase response.
Immunol Today. 1994 Feb;15(2):74-80.

Block G, Jensen CD, Dalvi TB, Norkus EP, Hudes M, Crawford PB, Holland N, Fung EB, Schumacher L, Harmatz P.
Vitamin C treatment reduces elevated C-reactive protein.
Free Radic Biol Med. 2009 Jan 1;46(1):70-7.

De Berardis D, Campanella D, Gambi F, La Rovere R, Carano A, Conti CM, Sivestrini C, Serroni N, Piersanti D, Di Giuseppe B, Moschetta FS, Cotellessa C, Fulcheri M, Salerno RM, Ferro FM.
The role of C-reactive protein in mood disorders.
Int J Immunopathol Pharmacol. 2006 Oct-Dec;19(4):721-5.

Evans-Olders R, Eintracht S, Hoffer LJ.
Metabolic origin of hypovitaminosis C in acutely hospitalized patients.
Nutrition. 2010 Nov-Dec;26(11-12):1070-4.

Fain O, Pariés J, Jacquart B, Le Moël G, Kettaneh A, Stirnemann J, Héron C, Sitbon M, Taleb C, Letellier E, Bétari B, Gattegno L, Thomas M.
Hypovitaminosis C in hospitalized patients.
Eur J Intern Med. 2003 Nov;14(7):419-425.

Fernandes PR, Lira FA, Borba VV, Costa MJ, Trombeta IC, Santos Mdo S, Santos Ada C.
Vitamin C restores blood pressure and vasodilator response during mental stress in obese children.
Arq Bras Cardiol. 2011 Jun;96(6):490-7.

Hamer M, Owen G, Kloek J.
The role of functional foods in the psychobiology of health and disease.
Nutr Res Rev. 2005 Jun;18(1):77-88.

David O. Kennedy, Rachel Veasey, Anthony Watson, Fiona Dodd, Emma Jones, Silvia Maggini,
Crystal F. Haskell
Effects of high-dose B vitamin complex with vitamin C and minerals on subjective mood and performance in healthy males
Psychopharmacology. July 2010, Volume 211, Issue 1, pp 55-68,

Lindblad M, Tveden-Nyborg P, Lykkesfeldt J.
Regulation of Vitamin C Homeostasis during Deficiency.
Nutrients. 2013 Jul 25;5(8):2860-79.

Louw JA, Werbeck A, Louw ME, Kotze TJ, Cooper R, Labadarios D.
Blood vitamin concentrations during the acute-phase response.
Crit Care Med. 1992 Jul;20(7):934-41.

Mikirova N, Casciari J, Rogers A, Taylor P.
Effect of high-dose intravenous vitamin C on inflammation in cancer patients.
J Transl Med. 2012 Sep 11;10:189.

William K. Summers, Roy L. Martin, Michael Cunningham, Velda L. DeBoynton, Gary M. Marsh
Complex Antioxidant Blend Improves Memory in Community-Dwelling Seniors
Journal of Alzheimer’s Disease. 2010; 19(2); 429-439

Luukinen H, Jokelainen J, Hedberg P.
The relationships between high-sensitivity C-reactive protein and incident depressed mood among older adults.
Scand J Clin Lab Invest. 2010 Apr;70(2):75-9.

Wang Y, Liu XJ, Robitaille L, Eintracht S, Macnamara E, Hoffer LJ.
Effects of vitamin C and vitamin D administration on mood and distress in acutely hospitalized patients.
Am J Clin Nutr. 2013 Jul 24.

Zhang M, Robitaille L, Eintracht S, Hoffer LJ.
Vitamin C provision improves mood in acutely hospitalized patients.
Nutrition. 2011 May;27(5):530-3.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Get Something Free… Radicals The Saga of Vitamins A, C and E

vitamins-foodThe same oxygen you need to stay alive and to burn food for energy makes you oxidize just as fast as a rusty fender on the old jalopy in the back yard…or maybe in the driveway if your surname is Clampett at 90210. If your apples turn brown and your fish or butter becomes rancid, blame it on oxygen. Lungs, eyes, skin, fruits, vegetables, herbs, you name it. If it has cells, it’ll oxidize and those cells will change. But it’s a normal part of living. Fret not. The Creator gave us a way to intercept the free radicals and undo their dastardly deeds. These molecules are “free” because they have parts missing, and they scour the neighborhood looking for replacements, sort of like the original equipment manufacturer you look for when rebuilding your ’57 Chevy. Being on a mission, these molecules will rampage to hook up with another molecule and steal electrons. Frankly, it would be simpler if free radicals just killed a cell and left it at that. But nope, it has to start the dominoes falling. If a cell were bumped off, the body would make a new one. Instead, the cell’s DNA gets damaged enough to set the stage for disaster.

Broken DNA can make a cell mutate and set up a chain reaction for other cells to do the same thing. Not good. Free radicals damage a bunch of cells. Overexposure to the sun, cigarette smoke (either first-hand or second-hand), vehicle exhaust (diesel is the worst), comestibles that are called food but really are not, booze, heavy metals and a few other hazards can work over time to create chronic sickness, including cancer, heart disease, Alzheimer’s disease and Parkinson’s. How do we fix things? Maybe it’s easier to put the brakes on oxidation in the first place. Waddya think?

Antioxidants are molecules that work to prevent damage due to both normal body processes and exposure to some chemicals and environmental perils. One of the benefits of antioxidants is their ability to slow oxidation in the smallest parts of the body—proteins and DNA. There are antioxidants made by the body and those that come from food or supplements. The water-soluble ones react with oxidants in the blood and in the free spaces inside cells. The fat-soluble protect cell membranes from a process known as lipid peroxidation. Some body tissues might have more of one antioxidant than another. For example, one may be plentiful in the kidney, but almost absent from the heart, while the opposite might apply to a different antioxidant. Some may appear at the same concentration in every part of the body.

The body has its own antioxidant defense system, one that relies partly on minerals for proper functioning. Superoxide dismutase (SOD) needs copper, zinc and manganese; glutathione peroxidase needs selenium; and catalase depends on iron. Except for selenium, minerals are not defined as antioxidants, but as cofactors in their manufacture. Although this endogenous system demands respect, we’re going to focus on the most commonly used exogenous antioxidants—vitamins A, C, and E. In most activities, biochemical as well as psycho-social, the buck stops somewhere. With antioxidants, the buck stops at glutathione, so we’ll give that molecule the respect it merits, particularly for the work it does in the lungs (Rahman, 2006) (Nadeem, 2008).

Vitamin A is a general term for a group of related fat-soluble substances, including retinal and retinol, cited as preformed vitamin A. Retinal is converted to retinoic acid, the form that influences gene transcription. Beta-carotene and other carotenoids are referred to as provitamin A compounds. Beta-carotene, the carotenoid that comes from yellow and orange foods, is converted by the liver to retinol. Some forms of this vitamin are occasionally used in pharmacological doses to treat a few conditions, including retinitis pigmentosa (Berson, 1993), acute promyelocytic leukemia (Thurnam, 1999) (Ross, 1999), and various skin conditions (Ross, 1999). However, it’s important to realize that high doses of retinoids, especially if synthetic, can override the body’s own control mechanisms and present toxicities.

Preformed vitamin A is available as retinyl palmitate or acetate, overdose of which is easy to happen because people don’t read labels and often get the vitamin from more than one source, such as from a multi-vitamin or fortified food and later from a separate supplement.  The chief concern is that vitamin A is rapidly taken up, but slowly cleared from the body. Alcohol depletes vitamin A stores from the liver, but taking vitamin A while drinking is an accident waiting to happen. Keeping intake from a supplement at 2500 IU (750 mcg) should do the trick, while avoiding adverse effects on bone in the geriatric crowd. Getting vitamin A from foods is not normally a problem of overdose unless the food is fortified with it (Promislow, 2002). Beta-carotene, by the way, has about half the potency of preformed A, where 2 mcg of supplemental beta-carotene can be converted to 1 mcg of retinol. With foods, though, it takes 12 mcg to make 1 mcg of retinol. Can you see why it’s hard to overdose on cantaloupe?  Pumpkin, carrots, sweet potatoes, mangoes and collards are decent sources.

Water-soluble vitamin C is ascorbic acid, not citric acid, the latter made commercially by the fermentation of molasses. Even though citric acid can be found in oranges, there aren’t enough oranges on the planet to meet a fraction of the demand from the food industry.  Besides being an antioxidant, vitamin C is required for the synthesis of collagen, the structural element that holds us together. Additionally, it helps to make the neurotransmitter norepinephrine. Most animals can make the vitamin C they need; humans and guinea pigs cannot (Linster, 2007). Like all reducing agents, vitamin C itself becomes oxidized. Such an entity donates one or more electrons to a substance that already has become oxidized and is a free radical. In this instance, an antioxidant can become a damaging molecule, running around, looking for an electron to replace the one it just donated. But there is a rescue molecule, where the buck stops, as mentioned earlier. Too much ascorbic acid may cause kidney stones, since oxalates are metabolites of vitamin C, but doses up to 2000 mg a day shouldn’t be a concern for healthy people (Taylor, 2004) (Auer, 1998). The original RDA was barely enough to prevent scurvy, the reason for the RDA in the first place. Citrus, bell peppers, broccoli, potatoes, tomatoes, and strawberries are good sources.

Vitamin E is a fat-soluble family of eight antioxidants—four tocopherols and four tocotrienols. Any adverse publicity you read about vitamin E is based only on alpha-tocopherol, synthetically produced at that and administered to people with pre-existing conditions. The alpha- form of tocopherol is the one most often encountered because it’s actively maintained in the body and has the greatest nutritional significance, although the beat-, delta-, and gamma- forms have merit. It is an antioxidant that prevents the oxidation of fats (rancidity). This is especially important to the cell membrane. After vitamin E gives up an electron, it becomes a free radical itself, but vitamin C and A sacrifice themselves for its salvation. Besides being antioxidant, vitamin E appears to modulate some genes, to inhibit cell proliferation, and to control platelet aggregation and monocyte adhesion. It might even interact with enzymes, structural proteins and lipids (Zingg, 2004) (Ricciarelli, 2002), and regulate cell signaling (Rimbach, 2002). The body recognizes synthetic forms of vitamin E as sham, so it pays to find the d- form, not the dl-form. Oils, avocados and nuts are good sources. If there be a caveat, it is that too much can interfere with blood clotting. Therefore, if taking an anti-coagulant medication, check with the doctor before supplementing. If a tooth extraction or more serious surgery is in the offing, stop supplementation days ahead of time.

Once an antioxidant gives up an electron it can act like the thugs it’s trying to sequester. It needs its own savior. Here comes glutathione to the rescue. This is the body’s master antioxidant, made from amino acids.  As long as sulfur-containing amino acid stores are adequate and are regularly refilled through diet or supplementation (N-acetyl cysteine is such a source), glutathione is able to spare an electron here and there to replace the ones lost by vitamins A, C and E. The dysregulation of glutathione is known to be a prime factor in pathology, from diabetes to pulmonary fibrosis (Lu, 2009), so it pays to consume enough sulfur foods to get the methionine, taurine and cysteine that glutathione needs to keep itself in perfect form. The crucifers, onions and garlic, and animal products, including egg yolks, are substantial sources.

Having the best home run hitter in the league doesn’t guarantee a championship season. You need defense, too; you need a team. The same applies to antioxidants. The overall collection rather than the heavily advertised super antioxidant is what it takes because different antioxidants counteract damage by different types of free radicals within different cellular compartments. Natural and balanced is the rule.

References

Abdullah Acar, M. Ugur Cevik, Osman Evliyaoglu, Ertugrul Uzar, Yusuf Tamam, Adalet Arıkanoglu, et al
Evaluation of serum oxidant/antioxidant balance in multiple sclerosis
Acta Neurologica Belgica. September 2012, Volume 112, Issue 3, pp 275-280

Auer BL, Auer D, Rodgers AL.
The effect of ascorbic acid ingestion on the biochemical and physicochemical risk factors associated with calcium oxalate kidney stone formation.
Clin Chem Lab Med. 1998 Mar;36(3):143-7.

Mehmet Balci, Erdinc Devrim and Ilker Durak
Effects of Mobile Phones on Oxidant/Antioxidant Balance in Cornea and Lens of Rats
Current Eye Research.2007, Vol. 32, No. 1 , Pages 21-25

Berr C, Richard MJ, Gourlet V, Garrel C, Favier A.
Enzymatic antioxidant balance and cognitive decline in aging–the EVA study.
Eur J Epidemiol. 2004;19(2):133-8.

Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W.
A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa.
Arch Ophthalmol. 1993 Jun;111(6):761-72.

Hassan Boskabadi, Mahdieh Moeini, Fatemeh Tara, Shima Tavallaie, Hamidreza Saber, Raheleh Nejati, Golkoo Hosseini, Hesam Mostafavi-Toroghi, Gordon A. A. Ferns, Majid Ghayour-Mobarhan
Determination of Prooxidant–Antioxidant Balance during Uncomplicated Pregnancy Using a Rapid Assay
Journal of Medical Biochemistry.June 2013. Volume 32, Issue 3, Pages 227–232

Cristóvão, C.; Cristóvão, L.; Nogueira, F.; Bicho, M.
Evaluation of the oxidant and antioxidant balance in the pathogenesis of chronic obstructive pulmonary disease
Revista Portuguesa de Pneumologia. 2013;19:70-5.

Dringen R
Metabolism and functions of glutathione in brain.
Prog Neurobiol. 2000 Dec;62(6):649-71.

Firuzi O, Miri R, Tavakkoli M, Saso L.
Antioxidant therapy: current status and future prospects.
Linster CL, Van Schaftingen E.

Curr Med Chem. 2011;18(25):3871-88.
Vitamin C. Biosynthesis, recycling and degradation in mammals.
FEBS J. 2007 Jan;274(1):1-22.

Lu SC.
Regulation of glutathione synthesis.
Mol Aspects Med. 2009 Feb-Apr;30(1-2):42-59.

Lu SC.
Glutathione synthesis.
Biochim Biophys Acta. 2013 May;1830(5):3143-53.

Celestyna Mila-Kierzenkowska, Alina Woźniaka, Tomasz Boraczyński, Michał Szpinda,  Bartosz Woźniak, Alicja Jurecka, Anna Szpinda
Thermal stress and oxidant–antioxidant balance in experienced and novice winter swimmers
J of Thermal Biology. Volume 37, Issue 8, December 2012, Pages 595–601

Nadeem A, Masood A, Siddiqui N.
Oxidant–antioxidant imbalance in asthma: scientific evidence, epidemiological data and possible therapeutic options.
Ther Adv Respir Dis. 2008 Aug;2(4):215-35.

Promislow JH, Goodman-Gruen D, Slymen DJ, Barrett-Connor E.
Retinol intake and bone mineral density in the elderly: the Rancho Bernardo Study.
J Bone Miner Res. 2002 Aug;17(8):1349-58.

Rahman I, Biswas SK, Kode A.
Oxidant and antioxidant balance in the airways and airway diseases.
Eur J Pharmacol. 2006 Mar 8;533(1-3):222-39.

Ricciarelli R, Zingg JM, Azzi A.
The 80th anniversary of vitamin E: beyond its antioxidant properties.
Biol Chem. 2002 Mar-Apr;383(3-4):457-65.

Rimbach G, Minihane AM, Majewicz J, Fischer A, Pallauf J, Virgli F, Weinberg PD.
Regulation of cell signalling by vitamin E.
Proc Nutr Soc. 2002 Nov;61(4):415-25.

Ross AC. Vitamin A and retinoids. In: Shils M, Olson JA, Shike M, Ross AC. ed. Modern Nutrition in Health and Disease. 9th ed. Baltimore: Lippincott Williams & Wilkins; 1999:305-327.

Amirhossein Sahebk, Akram Mohammadi, Ali Atabati, Shamim Rahiman, Shima Tavallaie Mehrdad Iranshahi, Saeed Akhlaghi, Gordon AA Ferns, Majid Ghayour-Mobarhan
Curcuminoids Modulate Pro-Oxidant–Antioxidant Balance but not the Immune Response to Heat Shock Protein 27 and Oxidized LDL in Obese Individuals
Phytother. Res. Article first published online: 15 MAR 2013. doi: 10.1002/ptr.4952

Taylor EN, Stampfer MJ, Curhan GC.
Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up.
J Am Soc Nephrol. 2004 Dec;15(12):3225-32.

Thurnham DI, Northrop-Clewes CA.
Optimal nutrition: vitamin A and the carotenoids.
Proc Nutr Soc. 1999 May;58(2):449-57.

Zingg JM, Azzi A.
Non-antioxidant activities of vitamin E.
Curr Med Chem. 2004 May;11(9):1113-33.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.