Vitamins? Why?

vitaminsDo you take vitamins? Yes? Why? No? Why not?  Confusing, isn’t it? Can we ever get to the bottom of the yes-no controversy?

First of all, let’s find out what we’re talking about.

The word “vitamins” describes organic substances that are quite diverse in function and structure.  It was initially felt that these compounds could be obtained through a normal diet, and that they were capable of promoting growth and development, and of maintaining life.  The word itself was coined by a Polish biochemist named Casimir Funk, in 1911.  He deemed these substances to be chemical amines, thinking that all contained a nitrogen atom.  Since they were considered to be vital to existence (“vita” means “life” in Latin), they were called “vitamines.”  After it was discovered that they all did not have a nitrogen atom, and, therefore, were not amines, the terminal “e” was dropped.  Funk was working in London at the time, at the Lister Institute, where he isolated a substance without which chickens would suffer neurological inflammation.

The lettered names of the vitamins were ascribed to them in the order of their discovery.  Vitamin K, however, is the exception.  Its label was given by the Danish researcher Henrik Dam, from the word “koagulation.”

If a vitamin is improperly absorbed, or is absent from the diet, a deficiency exists and a specific disease may surface, such as Beriberi, which was noted by William Fletcher in 1905 when symptoms appeared in populations whose diet consisted mostly of polished rice, lacking the thiamine-rich husk.  Lack of thiamine, or vitamin B1, causes emotional disturbances, physical weakness, heart failure, impaired sensory perception, and, in severe circumstances, eventual death.

Scurvy, a deficiency of vitamin C, was once a common ailment of sailors and others who were out to sea for a longer time than their fruits and vegetables could remain edible.  The Latin name of this condition that caused bleeding from the mucus membranes and spongy gums is “scorbutus,” from which we get “ascorbic acid.”  James Lind, a surgeon in the Royal Navy, learned in the 1750s that scurvy could be treated with citrus fruits, and he wrote about his experiments in his 1753 book, “A Treatise of the Scurvy.”

If vitamins are so “vital,” what, exactly, are their roles in human health and well-being?  Vitamin A was first synthesized in 1947, though discovered around 1912 by researchers Elmer McCollum and M. Davis, and later isolated from butter by Yale scientists Thomas Osborne and Lafayette Mendel.  This nutrient contains carotene compounds that are responsible for transmitting light signals to the retina of the eye.  McCollum also uncovered the B vitamins, but later researchers isolated each of the individual factors.

We already know that a lack of B1 causes Beriberi, while a deficiency of B2 may lead to inflammation of the lining of the mouth.  Also called riboflavin, B2 is responsible for the reactions of enzymes, as is its partner, B3 (niacin).  In general, the gamut of B vitamins is involved in the same metabolic processes.  It was decided that a B vitamin must meet specific criteria:  it must be water-soluble, must be essential for all cells, and must function as a coenzyme.  B12 and folate have the added responsibility of being involved in the synthesis of nucleic acid.  Folate is the form of the nutrient naturally found in food, while folic acid is synthetic. Great excesses of one B vitamin can cause deficiencies of the others.  Therefore, if taken as supplements, it is recommended that they be taken together.

Besides preventing scurvy, as mentioned, vitamin C helps the body to make collagen, the protein that acts as the framework for the body.  Collagen is a major component of ligaments and cartilage, it strengthens blood vessels, and it is responsible for skin strength and elasticity.  Vitamin C was the first to be artificially made, in 1935.

Vitamin D is not actually a vitamin, but a prohormone, meaning that it is a precursor to a hormone, called 1,25-D, which helps the body to make its own steroids, such as cholesterol, a substance absolutely necessary to the integrity of each of our trillions of cells.  Vitamin D is needed to maintain correct calcium and phosphorus levels, to assure proper bone mineralization, and to support the immune system.  A severe deficiency leads to rickets, a softening of the bones—usually in children—that was studied in 1922 by Edward Mellanby.

Vitamin E is actually a group of isomers (like-structured molecules) that function as antioxidants.  Study of this fat-soluble nutrient has focused on its purported benefits to the cardiovascular system. University of California researchers discovered vitamin E while studying green, leafy vegetables, in the 1920s.

Another fat-soluble substance, vitamin K is used by the body to assist in the manufacture of bone, and in the manufacture of blood clotting proteins, without which serious bleeding episodes may occur.  This nutrient has been available from green leafy vegetables and from the brassica family, such as broccoli, cauliflower, and kale.

Now the question is, “Can we get all these nutrients from our food, or is supplementation necessary?”

Working at the University of Texas Biochemical Institute, Dr. Donald Davis led a crop-nutrient study in 2004.  He and his team found that the nutrient value of forty-three garden crops has declined considerably over the past fifty years.  As reported in the “Journal of the American College of Nutrition” in December of that year, the forty-three crops showed “statistically reliable declines” in protein, calcium, iron, phosphorus, riboflavin (vitamin B2), and ascorbic acid (vitamin C).  Some nutrients could not be compared because their values were not reported in the 1950s.  They include magnesium, zinc, vitamin B6, vitamin E, dietary fiber, and phytochemicals.

After accounting for possible confounders, the study concluded that the change in nutrient value could be ascribed to changes in cultivated varieties, in which there could have been a trade-off between crop yield and nutrient value.  Dr. Davis added that farmers are paid by the weight of a crop, not by its food value.

Some innovative farming techniques have given rise to faster-growing crops, which, by virtue of their seed-to-market time, do not have sufficient time to develop their nutrients.  They do not have the chance to absorb everything they need from the soil.

Crop rotation has fallen into disfavor by some farms because it requires more planning and management skills than are at hand, thus increasing the complexity of farming.  Rotation of crops helps to reduce insect and disease problems, improves soil fertility, reduces soil erosion, and limits biocide carryover.  If, however, a single crop is a big moneymaker for the farm, why should it bother even to try to grow something else?  Why bother to rotate crops when chemical fertilizers, herbicides, fungicides, and insecticides can help to guarantee a bumper crop?  Could nutrient value be affected by using these artificial chemicals?  Do these materials come into our bodies?  Do we have the proper kinds and amounts of nutrients to detoxify them?  Maybe we do; maybe not.

Nitrogen-fixing bacteria convert atmospheric nitrogen to organic nitrogen, thus contributing to the food value of the crop.  Certain crops, like the legumes, are better than others at replacing nitrogen lost from the soil.  Nitrogen is part of a protein molecule.  Without nitrogen there is no protein.  While it is beneficial to the food and the soil to plant a legume following the harvest of a more lucrative planting, it is not often done.

Therefore, the same plant in place continues to withdraw the same minerals repeatedly, year after year, with little chance for replenishment except by chemical means, if at all.  How many of us would prefer to get our dietary needs from unnatural sources, like iron from rusted nails, or zinc from galvanized wire?

In a study of peaches and pears published in the “Journal of Agriculture and Food Chemistry” in 2002, Marina Carbonaro, of the National Institute for Nutrition Studies, in Rome, reported a difference in the nutrition content of organic versus traditionally raised fruits.  Amounts of polyphenols, citric and ascorbic acids, and alpha-tocopherol were increased in the organically grown crops.  She and her colleagues concluded that the improved antioxidant defense of the plants developed as a result of organic cultivation methods.  Which do you think has more vitamin C?

Here is a sampling of how the nutrient content of broccoli and potatoes sold in Canada has changed from 1951 to 1999.  This information was compiled by Jeffrey Christian.

Broccoli, Raw, 3 spears, 93g. 100/93=1.08
Calcium (mg) Iron
Vitamin A (I.U.) Vitamin C (mg) Thiamine (mg) Riboflavin (mg) Niacin (mg)
1951 130.00 1.30 3500 104.0 0.10 0.21 1.10
1972 87.78 0.78 2500 90.0 0.09 0.20 0.78
1999 48.30 0.86 1542 93.5 0.06 0.12 1.07
% Change -62.85 -33.85 -55.94 -10.10 -40.00 -42.86 -2.73
Potatoes, one potato, peeled before boiling, 136g. 100/136=.74
Calcium (mg) Iron
Vitamin A (I.U.) Vitamin C (mg) Thiamine (mg) Riboflavin (mg) Niacin (mg)
1951 11.00 0.70 20.00 17.00 0.11 0.04 1.20
1972 5.74 0.49 0.00 16.39 0.09 0.03 1.15
1999 7.97 0.30 0.00 7.25 0.09 0.02 1.74

The USDA, in its statistical bulletin # 978, made public in June, 2002, titled “The Changing Landscape of U. S. Milk Production,” admitted that milk production has increased because of “advances in animal nutrition and health, improved artificial breeding techniques, and the recent addition of biotechnology, such as…rbST…”
rbST is a hormone that is administered to cows to increase milk production.  Take a look at how milk production has changed, and then decide if there might be implications that could involve humans.

In 1950, a single cow (I mean one cow, not an unmarried cow.) produced 5,314 pounds of milk.  By 1975, she increased her output to 10,360 pounds.  In 2000, that amount increased to 18,204 pounds.  The USDA admits that “…a 76-percent increase in milk per cow since 1975 is substantial.”  Substantial?  How about phenomenal, even miraculous?  Could a factory have increased its output by seventy-five percent in twenty-five years?  Could a weight lifter elevate that much of a weight increase in a military press as he did twenty-five years ago?  Could recombinant bovine somatotropin enter the milk supply and affect human growth and development, or even contribute to human misery?

Not only do modern agricultural techniques affect the quality of food, but also do the processes by which food is processed and packaged.  To prevent the growth of pathogenic bacteria, some canned foods are exposed to temperatures that compromise their nutritional value.  Acidic foods, like tomatoes, are excused from excessive heat because their nature does not support the growth of food poisoning bacteria.  Others are heated to temperatures high enough to destroy bacteria, yeasts, and molds that could cause foods to spoil.  Heating to 250 degrees Fahrenheit for three minutes not only kills pathogens, but also denigrates the potency of water-soluble vitamins.  If these foods are consumed without also consuming the water in which they are prepared, nutrition is sacrificed.

The USDA has a table of nutrient retention factors that compare the nutritional value of processed foods.  This table includes most nutrients from alpha-tocopherol to zinc.  It is noted that folate, for example, a nutrient easily lost in food preservation and preparation, is diminished by almost 50% in canned fruits as compared to fresh and frozen.  Additionally, canned foods are higher in sodium, and their texture is softer than either fresh or frozen.  The mineral and protein values of canned foods are usually undisturbed.  In rare instances, as with tomatoes and pumpkin, nutrient value is retained, or even increased, by canning.  We should note that canned fruits and vegetables are better than none at all.

Frozen foods, on the other hand, retain much of the nutrition they are destined to have.  The folate retention factor for frozen fruits is ninety-five, contrasted to fifty for canned.  There are some compromises, though, because frozen foods need to be blanched prior to being frozen.  Blanching, however, is no worse than what happens to foods during normal cooking activity.  This means that frozen vegetables provide levels of nutrition similar to fresh, provided they are stored and handled properly.  The “International Journal of Food Science and Technology,” reported in June of 2007 that the freezing process alone does not affect vitamin levels, but that the initial processing and later storage do.  About 25% of vitamin C and a higher percentage of folate are lost through the blanching process.  These numbers will vary according to the processing techniques.

An advantage to canned and frozen foods is that the foods themselves are harvested at their maximum stage of development, containing all the vitamins and minerals they could possibly extract from their environments.  What we call “fresh” vegetables are usually anything but.  They have been picked before their maximum ripeness so that they can be shipped across the country.  If not harvested locally, “fresh” vegetables are more accurately labeled as “raw,” or “unprocessed.”  Water-soluble vitamins, like the B complex and vitamin C, are affected by exposure to light and air.  Vitamin A is jeopardized by exposure to light, as well.  The amount of time that a raw vegetable spends in storage may take its toll on nutrient integrity, also.

Typical Maximum Nutrient Losses (as compared to raw food)
Vitamins Freeze Dry Cook Cook+Drain Reheat
Vitamin A 5% 50% 25% 35% 10%
  Retinol Activity Equivalent 5% 50% 25% 35% 10%
  Alpha Carotene 5% 50% 25% 35% 10%
  Beta Carotene 5% 50% 25% 35% 10%
  Beta Cryptoxanthin 5% 50% 25% 35% 10%
  Lycopene 5% 50% 25% 35% 10%
  Lutein+Zeaxanthin 5% 50% 25% 35% 10%
Vitamin C 30% 80% 50% 75% 50%
Thiamin 5% 30% 55% 70% 40%
Riboflavin 0% 10% 25% 45% 5%
Niacin 0% 10% 40% 55% 5%
Vitamin B6 0% 10% 50% 65% 45%
Folate 5% 50% 70% 75% 30%
  Food Folate 5% 50% 70% 75% 30%
  Folic Acid 5% 50% 70% 75% 30%
Vitamin B12 0% 0% 45% 50% 45%
Minerals Freeze Dry Cook Cook+Drain Reheat
Calcium 5% 0% 20% 25% 0%
Iron 0% 0% 35% 40% 0%
Magnesium 0% 0% 25% 40% 0%
Phosphorus 0% 0% 25% 35% 0%
Potassium 10% 0% 30% 70% 0%
Sodium 0% 0% 25% 55% 0%
Zinc 0% 0% 25% 25% 0%
Copper 10% 0% 40% 45% 0%

Can we get all the vitamins and minerals we need from food?  No.

Take a look at vitamin C, one of the most-studied nutrients.  Because of its fragile nature, vitamin C, a popular water-soluble supplement, needs special handling.  This characteristic may explain why it seems to have been a major focus of the food business for years.  It is extremely sensitive to heat, and slightly less so to light, and time.  Loss of vitamin C during processing ranges from about 10% in beets to almost 90% in carrots.  The amount of vitamin C at the start has no bearing on the outcome.  It’s the percentage that makes the matter a real concern.  Since this vitamin is easily oxidized, it is difficult to measure levels in drained liquids.  That goes for the cooking water, as well.  Canned foods are further insulted by cooking at high temperatures for a long time, without a lid.  It is nutritionally prudent to include the water from the can in the meal.  Otherwise, the ascorbic acid goes down the drain.  The table below demonstrates changes in vitamin C levels resulting from canning alone.

Ascorbic acid (g / kg−1 wet weight) in fresh and canned vegetables
Commodity Fresh Canned % Loss
Broccoli 1.12 0.18 84
Corn 0.042 0.032 0.25
Carrots 0.041 0.005 88
Green peas 0.40 0.096 73
Spinach 0.281 0.143 62
Green beans 0.163 0.048 63
Beets 0.148 0.132 10
J Sci Food Agric 87:930–944 (2007) Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. Joy C Rickman, Diane M Barrett and Christine M Bruhn

 Freezing has less impact on nutrient levels than other types of processing. Because foods are harvested at their maximum maturity stage before freezing, they already contain the most nutritive value they can be expected to have. The table that follows shows losses of ascorbic acid (vitamin C) after periods of storage at various temperatures, starting at room temperature (20° C; 68° F), through the refrigerator crisper drawer (4° C; 39° F), to the freezer (-20° C; -4° F).

Losses of ascorbic acid (% dry weight) due to fresh and frozen storage
Commodity Fresh, 20 ◦C,
7 Days
Fresh, 4 ◦C,
7 Days
Frozen, −20 ◦C,
12 Months
Broccoli 56 0 10
Carrots 27 10
Green beans 55 77 20
Green peas 60 15 10
Spinach 100 75 30
J Sci Food Agric 87:930–944 (2007) Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. Joy C Rickman, Diane M Barrett and Christine M Bruhn

Vitamin C does continue to degrade after long periods of freezing, but at a slower rate. What seems to be the main factor in this process is the moisture content of the food at the outset. Notice that refrigerating foods as soon as they come home from the market plays a serious role in maintaining nutritive value. The cook is the penultimate figure in the saga of a food’s life. The method of cooking can cause loss of ascorbic acid at the rate of 15% to 55%. Losses in canned products are probably minimal because the food already sits in water. Oddly, unheated canned products are occasionally comparable to that which is cooked fresh. But who has the wherewithal to determine that at home? Remember that, because vitamin C oxidizes in air, the value of frozen foods may be substantially higher than fresh foods that have been stored for a long time or under sub-optimal conditions. So…fresh (raw) may not always be the best. Whatever the case, additional research is expected to substantiate changes in vitamin C levels caused by cooking habits. Microwaving, for example, may have an unexpected influence, based on the solubility and diffusion of certain food solids, such as sugars that may diminish faster than ascorbic acid, leaving vitamin C behind.

It is necessary to realize that carrots are not exactly heralded for their vitamin C value in the first place, so losses are relatively insignificant. Also, note that sources of information may present nonconcurring results due to variations in measurement techniques, quality of raw ingredients, and other variables.

The water-soluble B vitamins (all are water-soluble) suffer a fate similar to that of ascorbic acid. Thiamin, the least stable of the vitamins to thermal indignity, is most sensitive to degradation caused by food processing. But, since fruits and vegetables are not exceptional sources of this nutrient, its retention or loss does not represent overall nutrient retention or loss of a particular food. Riboflavin is unstable in the presence of light. Processing and storage / display play a role in its stability. Clear glass containers can cause this vitamin to dwindle. Realization of this fact by the food industry is one reason that certain foods are now in opaque containers. The exception to the B-vitamin family is vitamin B12 because it is found mostly in animal products. The same considerations that apply to vitamin C are appropriate for the B vitamins.

The normal eating habits of Americans suggest that we are woefully inadequate in meeting dietary recommendations to achieve optimum well-being and health.  Most of us do not eat the recommended number of daily servings of fruits and vegetables.  For some nutrients, daily intake needs may be higher for some populations than for others, especially those in particularly vulnerable groups, such as those with gastrointestinal problems or poor absorption, those who are chronically ill, those who are alcohol or drug dependent, and the elderly.

The June 19, 2002 edition of the “Journal of the American Medical Association” recanted that august body’s negative position on vitamin supplements when it advised all adults to take at least one multivitamin tablet a day.  The article, “Vitamins for Chronic Disease Prevention in Adults,” authored by Robert H. Fletcher, MD, MSc, and others, agreed that suboptimal levels of folic acid and vitamins B6 and B12 are a risk factor for cardiovascular disease, neural tube defects, and colon and breast cancers.  It added that risks for other chronic diseases are increased by low levels of the antioxidant vitamins A, C, and E.

Because it is accepted that high homocysteine levels are associated with increased risk of heart disease, the AMA’s recommendation for optimal levels of cardio-specific supplements are well founded.

Depending on a person’s physiological state, he or she may need more of a particular nutrient than is available from a multivitamin alone.  The bioavailability of a specific nutrient from a high quality supplement is close to one hundred percent, compared to a food whose life experiences might have been less than ideal.  In a society that falls short of consuming the five to nine servings of fruits and vegetables that are recommended, it would be inane to ask them to eat more fruits and vegetables to get the nutrients they lack.

This does not mean that a person should take a little of this and a little of that because he read about it somewhere.  On the contrary, supplementation with vitamins, minerals, and herbs is a scientific enterprise that entails one’s medical history, both distant and recent past, one’s current physiological state, and even one’s blood chemistry.

Do you take vitamins?

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Herbicides And Birth Defects

Herbicides & Birth DefectsAfter years of acceptance as a safe and effective weed killer, a popular herbicide is facing the guillotine as teratogenic—it causes malformations in an embryo or fetus. Initial investigations (in the 1970’s) into the safety record of the chemical, glyphosate, indicated that its safety to humans was guaranteed.  An organization called Earth Open Source has now indicted the chemical as a serious risk to public health while accusing the herbicide industry of hiding the truth for decades.

“Reports of neural defects and craniofacial malformations from regions where glyphosate-based herbicides (GBH) are used led us to undertake an embryological approach to explore the effects of low doses of glyphosate in development,” said researchers from the University of Buenos Aires, in Argentina (Paganelli 2010).  But even prior to this, sequestered research from 2007 showed that glyphosate induced fetal malformations in lab animals and “adverse reproductive effects in the male offspring of a certain kind of rat.” (Huffington Post 2011)  The basis for such concern is the interruption of retinoic acid signaling in the development of vertebrate embryos, where Pagnelli et al found that embryos of selected amphibians and chickens demonstrated “…a gradual loss of rhombomere domains, reduction of the optic vesicles, and microcephaly.”

First of all, the terms need description.  Rhombomeres are tiny parts of the neural tube that will become the central nervous system.  Optic vesicles are tiny sacs from which will develop the parts of the eye that actually see things.  Microcephaly is abnormal smallness of the head.  Now that we understand that these characteristics may befall an amphibian or a chicken, must we be concerned that the same could happen to a human embryo?  Could it happen to you or to one of your family from long-term exposure to glyphosate or a related substance?

One of the troublesome things about laboratory experiments is the deliberate exposure of lab animals to doses of chemicals at levels that are unlikely to contact a human.  However, it is a springboard for prudent conjecture, for it introduces the potential “what ifs” of the process.  Related animal testing in Brazil showed that exposure to large amounts of glyphosate caused death in half the study population (Dallegrave 2003), accompanied by severe developmental retardation of fetal skeletons.  A sensible question asks why this data has been kept under wraps for nearly a decade.  The sensible answer is that the chemical industry didn’t want this info to go public for fear of boycott and reprisal that would inflict fiduciary pain.  The industry response is to say that the test results remain unclear, but that might just depend on whose spectacles are covered with petroleum jelly.  After all, testing poisons directly on humans is not, well, um, human.

The EPA, a watchdog that some say wears an eye patch, evaluates biocides every fifteen years in a process called registration review.  Lots can happen in that time.  Glyphosate works on weeds and other plants that are not genetically modified to tolerate it.   That tells the consumer that wherever it is used, the food it protects against weed infiltration is probably a GMO, the long-term effects of which are yet unknown.  When the Argentine government pulled that nation out of recession in the 1990’s it relied on GMO soy to help.  Shortly thereafter, residents near those soy farms—where glyphosate was used—experienced adverse health they had not experienced before.  High rates of birth defects and cancer were among them.  But also, there was destruction of non-tolerant crops and livestock from drifting of the overspray.  Argentine officials were implored by a group of environmental lawyers to ban the glyphosate spray, but the ban was never adopted nation-wide, although several provinces restricted spraying near populated areas.

There is speculation that plants immune to glyphosate develop bacterial infections novel to their species, and that these bacteria pose a threat to animal husbandry by initiating miscarriages.  Corn and soy, the two most heavily genetically modified crops, suffer the most bacterial rampage.  There is a possibility that humans could be affected.  Don Huber, a retired plant pathologist from Purdue, told the agriculture department of these concerns early in 2011, but was offered no comment from the government, while being summarily dismissed by the maker of glyphosate in the United States.  Over a hundred glyphosate formulations are on the market, many made in Asia.  The glyphosate industry labels independent studies as bogus, incomplete, and short-sighted.  They do, however, offer their own research as alternatives.

So, what does retinoic acid have to do with this?  Retinoic acid is the metabolite of Vitamin A that controls growth and development.  If stymied, as happens in the presence of glyphosate, reproductive chaos ensues as hypogonadism and infertility.  We should feel comforted knowing that the glyphosate industry has everything under control.

Chem Res Toxicol. 2010 Aug 9. [Epub ahead of print]
Glyphosate-Based Herbicides Produce Teratogenic Effects on Vertebrates by Impairing Retinoic Acid Signaling.
Paganelli A, Gnazzo V, Acosta H, López SL, Carrasco AE.
Laboratorio de Embriologia Molecular, CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 3 degrees piso (1121), Ciudad Autonoma de Buenos Aires, Argentina.

Toxicol Lett. 2003 Apr 30;142(1-2):45-52.
The teratogenic potential of the herbicide glyphosate-Roundup in Wistar rats.
Dallegrave E, Mantese FD, Coelho RS, Pereira JD, Dalsenter PR, Langeloh A.
Department of Pharmacology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500 sala 202, 90046-900 Porto Alegre, RS, Brazil. [email protected]

Environ Mol Mutagen. 1998;31(1):55-9.
32P-postlabeling detection of DNA adducts in mice treated with the herbicide Roundup.
Peluso M, Munnia A, Bolognesi C, Parodi S.

Environ Health Perspect. 2005 Jun;113(6):716-20.
Differential effects of glyphosate and roundup on human placental cells and aromatase.
Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE.
Laboratoire de Biochimie et Biologie Moleculaire, USC-INCRA, Université de Caen, Caen, France

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Essential Fats Explained

fattyacid-sourceThe essential fatty acids (EFA’s) are just that—essential, meaning they have to come from the diet because the body can’t manufacture them. They might be used as fuel, but they are absolute components of the biological processes that make us work. Only two fatty acid families are vital to humans, omega-6’s and omega-3’s. It’s been shown that their ratio is more important than their volume. The parent fatty acid (FA) in the omega-6 (n-6) line is linoleic acid, abundant in many vegetable oils and ultimately responsible for the biosynthesis of arachidonic acid and related prostaglandins, which are compounds that regulate physiological activities. Alpha-linolenic acid (ALA) is the mother omega-3 (n-3) fatty acid, commonly extracted from seed oils such as flaxseed and hemp, but also found in walnuts. Nearly every aspect of human physiology is affected by essential fats, receptors for which are located in practically every cell.

The n-6 fatty acids have been denigrated in recent years because their excess has been linked to several metabolic upsets. Unbalanced diets are harmful to health, and the n-6’s that overpopulate processed foods and rancid supermarket oils have contributed to myriad health woes. What possibly started out as a 1 to 1 or 2 to 1 ratio of n-6 fatty acids to n-3 fatty acids in the human diet eons ago has become a physiological disaster of imbalance, where the ratio exceeds 10 to 1 in the typical Western diet, and may even approach 20 to 1, or worse, in personal food intake. All fatty acids go through a process of desaturation and elongation to become eminently bioactive compounds. The ultimate products of the process are beneficial to human health, especially if they are made step-by-step by the body and not forced upon it through manufactured meals, unnaturally finished meat products, stale/oxidized vegetable oils, and fossilized eggs, not to mention horrific snack foods. In a healthy body, linoleic acid is converted to gamma-linolenic acid (GLA), which becomes arachidonic acid, from which come the chemicals that control inflammation. After adulthood, the body’s ability to make those conversions is uncertain, so starting with GLA gives us a head start. However, mother linoleic acid is anti-inflammatory in its own right and even a marginal conversion to GLA has been held effective in the management of conditions as diverse as rheumatoid arthritis, eczema and ADD/ADHD.

The n-3 parent, ALA, also must come from diet because humans lack the enzymes necessary to convert it from other fats. But it’s the downstream omega-3’s that get the publicity:  EPA and DHA. Like the n-6’s, the conversion of ALA to EPA and later to DHA is an uncertain proposition in adulthood, which is why most adults use fish oil, a source of pre-made fatty acids. Even in the absence of the requisite conversion co-factors (vitamin B6, Mg, biotin, vitamin B3, vitamin C and Zn), ALA is anti-inflammatory and cardiac friendly (Pan, 2012) (Vedtofte, 2012), with recent scrutiny heralding its potential to inhibit progression of atherosclerosis (Bassett, 2011). The most readily available source of ALA is flaxseed, although chia, the newest kid on the block, is entering the marketplace.

Signs of fatty acid deficiency include a dry scaly rash, impoverished growth in youngsters, increased susceptibility to infections and poor wound healing, but are uncommon. The enzymes that convert the parent fatty acids act preferentially toward the n-3’s. By the time these enzymes deal with the omega-3 fats, some of the omega-6’s have been used for energy, hence the need to get more 6’s than 3’s, in a ratio of about 4 to 1, as evidenced by intensive research done in the 1990’s and early-mid 2000’s (Yahuda, 1993, 1996) (Simopoulos, 2002, 2008). But this ratio is based on the body’s own manufacture of the downstream fatty acids, GLA and arachidonic acid (ARA) along the n-6 line (the latter now included in products designed for infants to insure proper brain development) and EPA/DHA down the n-3 line. Deficiency of essential fatty acids sometimes strikes those suffering from cystic fibrosis or fat malabsorption issues. If patients receive total parenteral nutrition without the inclusion of EFA’s, deficit will appear in about a week or two.

The dry weight of the brain is about 80% lipids, the highest of any organ. The long-chain polyunsaturated fats, especially the n-6 and n-3, are crucial in modulating neural function. They occupy as much as 30% of the brain’s dry weight, making their influence on neural membrane dynamics profound. The shift away from EFA’s in the Western—typically American—diet parallels a rise in mental disorders. The need to address EFA supplementation is real and current, with the inclusion of omega-6 fats a necessity, since GLA, the downstream scion of linoleic acid, has held its own in mental health studies (Vaddadi, 2006). Together, the n-6’s and n-3’s cooperate in a number of cellular functions that affect membrane fluidity, allowing the passage of food and energy into the cell and wastes out. Arachidonic acid is a precursor to signaling molecules in the brain and is a key inflammatory intermediate, while EPA and DHA work to support the cardiovascular system, and the brain and retina.

It is arachidonic acid that supports membrane fluidity in the hippocampus, the part of the brain that directs memory, spatial relations and inhibition (Fukaya, 2007). It is arachidonic acid that protects the brain against oxidative stress and activates proteins in charge of the growth and repair of neurons (Darios, 2006). There is conjecture that ARA supplementation during the early stages of Alzheimer’s disease may slow its progress and stave off symptoms (Schaeffer, 2009). That’s a pretty good promise for something that’s been spurned…for lack of knowledge. Of the n-3’s, EPA may be effective in addressing depressive conditions and behavioral anomalies, besides being able to reduce inflammation (Brind, 2001) (Song, 2007). There had been some concern that EPA adversely affects clotting factors and fibrinogen concentrations, increasing the likelihood of bleeding. That is not so (Finnegan, 2003). It does, however, improve blood viscosity and red blood cell deformity, which allows red cells to adjust their shape to squeeze through narrow blood vessels, like capillaries. Downstream from EPA is DHA, a major fatty acid in sperm, brain phospholipids and the retina of the eye, and found to lower triglycerides. But its claim to fame is its rapid accrual in the developing brain during the third trimester of pregnancy and early postnatal period (Auestad, 2003) (Wainwright, 2000).

You can safely bet the farm that endogenous (made by the body itself) substances are more tightly regulated than exogenous. For example, the arachidonic acid your body makes from linoleic acid is more respectable than that from a haphazardly slaughtered steer, which may or may not be completely lifeless before the abattoir starts to dress it. In fear and pain, the animal releases a torrent of adrenal hormones throughout its flesh, confounding the integrity of its innate fatty acids. Endogenous fatty acids are, therefore, more wholesome.

How do we acquire the parent fatty acids?  You could buy oils that boast omega-6 and omega-3 fatty acid content from the supermarket, but it’s almost guaranteed that the balance will be too far out of whack to deliver a benefit, and the purity of the oils is possibly iffy. In fact, they might upset the apple cart. An overabundance of n-3’s can shut the immune system down for lack of guidance by the n-6 inflammation directors. On the other hand, BodyBio Balance Oil is a blend of organic, cold-pressed sunflower and flaxseed oils that are purposely geared to supply a 4 to 1 ratio of fatty acids that the body needs to initiate the cascade to longer chain fats that present vibrant physiological activity. Just the anti-inflammatory properties of the mother fatty acids, linoleic from sunflower and alpha-linolenic from flax, are enough to warrant using the oils to bolster the body’s well-being and to work out some metabolic kinks. Used to make salad dressings or to dress vegetables in place of butter, Balance Oil has the potential to set straight that which is awry, and the essential fatty acid metabolites can help to clear the brain fog on a hazy day. Cerebral lipids, especially the long-chain fatty acids, have significant direct and indirect activity on cerebral function. Not only do they affect the membranes, but also many are converted to neurally active substances. There is good evidence that mental challenges are related to EFA depletion, the supplementation of which can ameliorate the most defiant state of affairs.


Auestad N, Scott DT, Janowsky JS, Jacobsen C, Carroll RE, Montalto MB, Halter R, Qiu W, et al
Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age.
Pediatrics. 2003 Sep;112(3 Pt 1):e177-83.

Bassett CM, McCullough RS, Edel AL, Patenaude A, LaVallee RK, Pierce GN.
The α-linolenic acid content of flaxseed can prevent the atherogenic effects of dietary trans fat.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2220-6. doi: 10.1152/ajpheart.00958.2010. Epub 2011 Sep 30.

Caramia G.
The essential fatty acids omega-6 and omega-3: from their discovery to their use in therapy.
Minerva Pediatr. 2008 Apr;60(2):219-33.

Chang CS, Sun HL, Lii CK, Chen HW, Chen PY, Liu KL.
Gamma-Linolenic Acid Inhibits Inflammatory Responses by Regulating NF-kappaB and AP-1 Activation in Lipopolysaccharide-Induced RAW 264.7 Macrophages.
Inflammation. 2009 Oct 20.

Darios F, Davletov B.
Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3.
Nature. 2006 Apr 6;440(7085):813-7.

da Rocha CM, Kac G.
High dietary ratio of omega-6 to omega-3 polyunsaturated acids during pregnancy and prevalence of post-partum depression.
Matern Child Nutr. 2012 Jan;8(1):36-48. doi: 10.1111/j.1740-8709.2010.00256.x. Epub 2010 Jun 21.

Dupasquier CM, Dibrov E, Kneesh AL, Cheung PK, Lee KG, Alexander HK, Yeganeh BK, Moghadasian MH, Pierce GN.
Dietary flaxseed inhibits atherosclerosis in the LDL receptor-deficient mouse in part through antiproliferative and anti-inflammatory actions.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2394-402. Epub 2007 Jul 6.

Fernandes FS, de Souza AS, do Carmo Md, Boaventura GT.
Maternal intake of flaxseed-based diet (Linum usitatissimum) on hippocampus fatty acid profile: implications for growth, locomotor activity and spatial memory.
Nutrition. 2011 Oct;27(10):1040-7.

Finnegan YE, Howarth D, Minihane AM, Kew S, Miller GJ, Calder PC, Williams CM.
Plant and marine derived (n-3) polyunsaturated fatty acids do not affect blood coagulation and fibrinolytic factors in moderately hyperlipidemic humans.
J Nutr. 2003 Jul;133(7):2210-3.

Fukaya T, Gondaira T, Kashiyae Y, Kotani S, Ishikura Y, Fujikawa S, Kiso Y, Sakakibara M.
Arachidonic acid preserves hippocampal neuron membrane fluidity in senescent rats.
Neurobiol Aging. 2007 Aug;28(8):1179-86. Epub 2006 Jun 21.

C. Gómez Candela, L. M.ª Bermejo López and V. Loria Kohen
Importance of a balanced omega 6/omega 3 ratio for the maintenance of health.Nutritional recommendations
Nutr Hosp. 2011;26(2):323-329.

Ángeles Guinda, M. Carmen Dobarganes, M. Victoria Ruiz-Mendez, Manuel Mancha
Chemical and physical properties of a sunflower oil with high levels of oleic and palmitic acids
European Journal of Lipid Science and Technology. 105(3-4); Apr 2003: 130-137

Essential fatty acids and mental health
The British Journal of Psychiatry (2005); 186: 275-277

William S. Harris, PhD, FAHA, Chair;  Dariush Mozaffarian, MD, DrPH, FAHA;  et al
Omega-6 Fatty Acids and Risk for Cardiovascular Disease
A Science Advisory From the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention
Circulation. 2009; 119: 902-907

Kakutani S, Ishikura Y, Tateishi N, Horikawa C, Tokuda H, Kontani M, Kawashima H, Sakakibara Y, Kiso Y, Shibata H, Morita I.
Supplementation of arachidonic acid-enriched oil increases arachidonic acid contents in plasma phospholipids, but does not increase their metabolites and clinical parameters in Japanese healthy elderly individuals: a randomized controlled study.
Lipids Health Dis. 2011 Dec 22;10:241.

Lands B.
Consequences of essential Fatty acids.
Nutrients. 2012 Sep;4(9):1338-57.

The Proper Balance of Essential Fatty Acids for Life
Journal of Oleo Science. Vol. 50 (2001) , No. 5 399-405

Maekawa M, Takashima N, Matsumata M, Ikegami S, Kontani M, Hara Y, Kawashima H, Owada Y, Kiso Y, Yoshikawa T, Inokuchi K, Osumi N.
Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses.
PLoS One. 2009;4(4):e5085. doi: 10.1371/journal.pone.0005085. Epub 2009 Apr 8.

Osumi N.
Fatty acid signal, neurogenesis, and psychiatric disorders
Nihon Shinkei Seishin Yakurigaku Zasshi. 2010 Jun;30(3):141-8.

Pan A, Chen M, Chowdhury R, Wu JH, Sun Q, Campos H, Mozaffarian D, Hu FB.
α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis.
Am J Clin Nutr. 2012 Dec;96(6):1262-73. doi: 10.3945/ajcn.112.044040. Epub 2012 Oct 17.

Pawels EK, Volterrani D.
Fatty acid facts, Part I. Essential fatty acids as treatment for depression, or food for mood?
Drug News Perspect. 2008 Oct;21(8):446-51. doi: 10.1358/dnp.2008.21.8.1272136.

Peet M, Brind J, Ramchand CN, Shah S, Vankar GK.
Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia.
Schizophr Res. 2001 Apr 30;49(3):243-51.

Sakayori N, Maekawa M, Numayama-Tsuruta K, Katura T, Moriya T, Osumi N.
Distinctive effects of arachidonic acid and docosahexaenoic acid on neural stem /progenitor cells.
Genes Cells. 2011 Jul;16(7):778-90. doi: 10.1111/j.1365-2443.2011.01527.x. Epub 2011 Jun 13.

Sanders TA, Rana SK.
Comparison of the metabolism of linoleic and linolenic acids in the fetal rat.
Ann Nutr Metab. 1987;31(6):349-53.

Schaeffer EL, Forlenza OV, Gattaz WF.
Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease.
Psychopharmacology (Berl). 2009 Jan;202(1-3):37-51.

Simopoulos AP.
The importance of the ratio of omega-6/omega-3 essential fatty acids.
Biomed Pharmacother. 2002 Oct;56(8):365-79.

Artemis P. Simopoulos
The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases
Experimental Biology and Medicine  233:674-688 (2008)

Meharban Singh
Essential fatty acids, DHA and human brain
Indian Journal of Pediatrics. Volume 72, Number 3 / March, 2005: 239-242

Song C, Zhao S.
Omega-3 fatty acid eicosapentaenoic acid. A new treatment for psychiatric and neurodegenerative diseases: a review of clinical investigations.
Expert Opin Investig Drugs. 2007 Oct;16(10):1627-38.

Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE.
Essential fatty acids in visual and brain development.
Lipids. 2001 Sep;36(9):885-95.

Vaddadi K.
Essential fatty acids and mental illness.
Int Rev Psychiatry. 2006 Apr;18(2):81-4.

Vedtofte MS, Jakobsen MU, Lauritzen L, Heitmann BL
The role of essential fatty acids in the control of coronary heart disease.
Curr Opin Clin Nutr Metab Care. 2012 Nov;15(6):592-6.

Wainwright P.
Nutrition and behaviour: the role of n-3 fatty acids in cognitive function.
Br J Nutr. 2000 Apr;83(4):337-9.

Yehuda S, Carasso RL.
Modulation of learning, pain thresholds, and thermoregulation in the rat by preparations of free purified alpha-linolenic and linoleic acids: determination of the optimal omega 3-to-omega 6 ratio.
Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10345-9.

Yehuda S, Brandys Y, Blumenfeld A, Mostofsky DI.
Essential fatty acid preparation reduces cholesterol and fatty acids in rat cortex.
Int J Neurosci. 1996 Sep;86(3-4):249-56.

Yehuda S, Rabinovtz S, Carasso RL, Mostofsky DI.
Essential fatty acids preparation (SR-3) improves Alzheimer’s patients quality of life.
Int J Neurosci. 1996 Nov;87(3-4):141-9.

Yehuda S, Rabinovitz S, Mostofsky DI.
Essential fatty acids are mediators of brain biochemistry and cognitive functions
J Neurosci Res. 1999 Jun 15;56(6):565-70.

Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI.
The role of polyunsaturated fatty acids in restoring the aging neuronal membrane.
Neurobiol Aging. 2002 Sep-Oct;23(5):843-53.

Young G, Conquer J.
Omega-3 fatty acids and neuropsychiatric disorders.
Reprod Nutr Dev. 2005 Jan-Feb;45(1):1-28.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Mineral Balance: Copper-Zinc

copper-zinc-scaleThe last mineral topic we covered dealt with sodium and potassium. Important stuff, this mineral balance. Recall that the amounts of minerals needed by the body are not an indication of their importance, and that we probably can’t get all that we need from our foods because of untrustworthy practices from seed to table. Remember, too, that kids, especially, need to eat the plants to get the minerals. The recommended number of servings of fruits and vegetables is now nine to thirteen, up from five to nine. Either way, how many people do you know who eat that much?

Copper and zinc are antagonists, and the balance between them is an example of biological dualism. This does that, and that does this, and they often fight with each other. Kind of a simple explanation, but maybe you get it. Yes, it’s possible for there to be zinc toxicity and copper toxicity. In the past, it’s been copper toxicity and zinc deficiency. Today it might be just the reverse, considering that people take supplements without the faithful reading of labels. Both minerals play important roles in the body.

Copper is necessary for blood vessel formation, a strong heart and for stabilizing collagen. You know what collagen is…the glue that holds us together. We need copper for brain development and for communication between nerve cells in the brain. Copper is essential to a number of enzymes involved in energy production by the mitochondria.  It helps to make superoxide dismutase to get rid of reactive oxygen species (free radicals). Because it’s found in a number of foods, copper deficiency is not common. Meats, shellfish, nuts, and seeds are premier sources, followed by mushrooms, lentils, shredded wheat and chocolate. Daily intake by adults normally is a little more than a milligram, which is only a bit higher than the RDA of 0.9 mg. The tolerable upper limit for adults is 10 mg, while most supplements contain 2 mg. Infants fed a cow’s milk diet are the ones most likely deficient because milk has little copper, but people with malabsorption disorders are close behind. Anemia and low white blood cell count are signs of deficit. Take care to note that very high doses of vitamin C might interfere with copper-related enzyme efficiency (Finley, 1983). But that’s not written in stone. Zinc overdose, however, might be a legitimate cause of copper deprivation.

Now, here’s the rub with zinc. Concerns arise when you take several supplements that each contain zinc. The tolerable upper limit, the dose above which there may be adverse reactions, is 40 milligrams for an adult. Let’s see, Hmm, prostate formula contains 15 mg; cold/flu formula contains 15 mg; daily multi-vitamin contains 15 mg; nasal spray contains 5 mg; other zinc complexes aimed at myriad conditions contain more…  Can you see where we’re going?  Copper deficiency now becomes a possibility. The need for zinc hovers around 11 mg for a guy, about 8 mg for a non-pregnant female.

Zinc is needed for steroid hormone synthesis, being a well-known catalyst for testosterone manufacture as well as luteinizing hormone, the one that stimulates ovulation. Of all the body parts, the prostate contains the highest concentrations. More than a hundred different enzymes rely on zinc for their ability to catalyze chemical reactions in the body. It plays a structural role in the superoxide dismutase mentioned in the earlier paragraph and in the integrity of the cell membrane. In fact, the loss of zinc from biological membranes increases their susceptibility to oxidative damage (O’Dell, 2000). Then, we have these nifty little things called zinc fingers, which are transcription factors that bind to DNA and influence specific genes, which are stabilized by the presence of zinc. Taking too much zinc over a period of a few weeks will upset copper bioavailability, possibly resulting in hematology issues down the line. Meanwhile, the bioavailability of folate/folic acid/folinic acid is enhanced by zinc.

Zinc deficiency usually follows genetic disorders and is identified as such. Immune deficiencies, impaired healing, diminished sense of taste (and perhaps smell), night blindness, opacity of the cornea, behavioral disturbances, and delayed maturation are common signs of low zinc values. Deficiency in children is dramatic in that neuropsychological development is impeded and susceptibility to life-threatening infections is increased (Hambidge, 2000).

Do those zinc lozenges advertisements have any immune system merit? We know that zinc deficiency causes immune dysfunction, but there is mixed commentary on the efficacy of zinc mega-doses for colds and other viral infections in people with ample zinc stores (Baum, 2000) (Salqueiro, 2000) (Fraker, 2000). The immune system relies on more than just zinc for its competence. Essential amino and fatty acids, selenium and iron, folic acid and vitamins B6 and B12, and vitamins E, A and C have a say in the immune system’s function. Consider, too, that a deficiency in one of these is likely to follow a deficiency in one or more of the others. Intakes of nutrients in excess of the recommendations do not necessarily translate to a boost in all immune activity unless a deficiency has been identified. Even then, despite the disparity in research conclusions, mega-doses of one mineral can knock another one out of the ring. On the other hand, using zinc lozenges as soon as cold symptoms appear seems to reduce severity and duration, depending on the formulation (Singh, 2011).

Balancing copper and zinc, though vitally important, may not be as easy as expected. Exposure to other metals, especially to lead that may originate from ancient water pipes, contaminated ground water, the shooting sports, some toys and paints,and fishing sinkers, can push zinc out. Iron, particularly from a supplement, may inhibit intestinal absorption of both zinc and copper through competition for transport molecules located in the gut. Wilson’s disease, the inability to metabolize copper out of the body, requires a dietary change that precludes mushrooms, nuts, chocolate, shellfish and dried fruits, and includes zinc therapy (Chasapis, 2012). The testing for zinc and copper values is not completely established because reference ranges are based on statistical averages, not on optimum functional levels. As with other nutrients, availability from foods is too often questionable, but supplementation should to be considered under the guidance of a knowledgeablenutrition professional, such as a credentialed nutritionist or dietitian. A caveat: Don’t even think about drinking water from a galvanized container. There are reports of a family that had collected its drinking water from a brand new refuse container and suffered from zinc overdose. Some denture adhesives contain zinc. Be careful. Read labels.


Baum MK, Shor-Posner G, Campa A.
Zinc status in human immunodeficiency virus infection.
J Nutr. 2000 May;130(5S Suppl):1421S-3S.

Brewer GJ, Yuzbasiyan-Gurkan V, Lee DY.
Use of zinc-copper metabolic interactions in the treatment of Wilson’s disease.
J Am Coll Nutr. 1990 Oct;9(5):487-91.

Calder PC, Kew S.
The immune system: a target for functional foods?
Br J Nutr. 2002 Nov;88 Suppl 2:S165-77.

Chan S, Gerson B, Subramaniam S.
The role of copper, molybdenum, selenium, and zinc in nutrition and health.
Clin Lab Med. 1998 Dec;18(4):673-85.

Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME.
Zinc and human health: an update.
Arch Toxicol. 2012 Apr;86(4):521-34.

Finley EB, Cerklewski FL.
Influence of ascorbic acid supplementation on copper status in young adult men.
Am J Clin Nutr. 1983 Apr;37(4):553-6.

Fraker PJ, King LE, Laakko T, Vollmer TL.
The dynamic link between the integrity of the immune system and zinc status.
J Nutr. 2000 May;130(5S Suppl):1399S-406S.

Hambidge M.
Human zinc deficiency.
J Nutr. 2000 May;130(5S Suppl):1344S-9S.

Hulisz D.
Efficacy of zinc against common cold viruses: an overview.
J Am Pharm Assoc (2003). 2004 Sep-Oct;44(5):594-603.

Jackson JL, Lesho E, Peterson C.
Zinc and the common cold: a meta-analysis revisited.
J Nutr. 2000 May;130(5S Suppl):1512S-5S.

McElroy BH, Miller SP.
Effectiveness of zinc gluconate glycine lozenges (Cold-Eeze) against the common cold in school-aged subjects: a retrospective chart review.
Am J Ther. 2002 Nov-Dec;9(6):472-5.

Milne DB, Davis CD, Nielsen F
Low dietary zinc alters indices of copper function and status in postmenopausal women.
Nutrition. 2001 Sep;17(9):701-8.

O’Dell BL.
Role of zinc in plasma membrane function.
J Nutr. 2000 May;130(5S Suppl):1432S-6S.

Perrone L, Di Palma L, Di Toro R, Gialanella G, Moro R.
Interaction of trace elements in a longitudinal study of human milk from full-term and preterm mothers.
Biol Trace Elem Res. 1994 Jun;41(3):321-30.

Salgueiro MJ, Zubillaga M, Lysionek A, Cremaschi G, Goldman CG, Caro R, De Paoli T, Hager A, Weill R, Boccio J.
Zinc status and immune system relationship: a review.
Biol Trace Elem Res. 2000 Sep;76(3):193-205.

Singh M, Das RR.
Zinc for the common cold.
Cochrane Database Syst Rev. 2011 Feb 16;(2):CD001364.

Turnlund J, Costa F, Margen S.
Zinc, copper, and iron balance in elderly men.
Am J Clin Nutr. 1981 Dec;34(12):2641-7.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Zinc Away Your Inflammation

coin-pailWhen you put your hand into your pants pocket and shake it around, you can hear the jingling of loose change. No change, no jingle. You have identified a deficit. It’s not that easy with some nutrient deficits. Zinc is one of them. Although zinc levels are low in some disorders, the most reliable method for diagnosing zinc deficiency is a positive response to zinc supplementation.  Most of the zinc in the body is held in skeletal muscle and bone, so we’re not likely to notice a shortage right away because there are no signs. Growth retardation, low insulin levels, anorexia, mental fog, rough skin, and decreased thyroid function are symptoms, but these may also be related to other causes.  Worldwide, zinc deficiency is not uncommon, though it is rare in the United States. Nonetheless, it’s a good idea to make sure your buckets are filled.

Functionally, zinc is part of more than a hundred different enzymes that catalyze important chemical reactions. Structurally, it helps to build proteins and cell membranes. In fact, there is a component call a zinc-finger that stabilizes protein complexes and helps to regulate gene expression by binding to DNA. Loss of this mineral from the cell membrane opens it to insult from oxidative damage.

What was once considered hyperbolic in promoting zinc as treatment for illnesses such as colds and related respiratory concerns is now being examined as practicable. One of the body’s protective reactions to attack by irritation, infection or injury is inflammation, characterized by redness, swelling, discomfort and, occasionally, loss of function.  Inflammation will activate platelets and attract monocytes/macrophages to swallow up harmful foreign particles. If it becomes chronic, inflammation can grow increasingly destructive of healthy tissue while it tries to heal that tissue already under attack. Out-of-control inflammation can become a threat to life.

As an intermediary in the inflammatory process, zinc helps to control the ardor with which the body fights infections and other physiological troublemakers. Current research has learned that zinc modulates inflammation by connecting with, and impeding, the function of specific protein instigators. This work has focused on the context of sepsis, which is a systemic response to infection that can be devastating enough to cause death. This septic condition has a name—Systemic Inflammatory Response Syndrome (SIRS). What often follows is depressed organ function—Multiple Organ Dysfunction Syndrome (MODS)—and consequent death.  Nuclear factor-kappa Beta, known as NF-kB, is a protein that acts as a transcription factor, and is especially active in responses to stressors like free radicals, radiation, bacterial and viral antigens, and cytokines. The latter initiate an immune response and include chemicals such as interferons and interleukins. In NF-kB is not kept in check, it can wreak more havoc than Attila the Hun.

In the presence of adequate zinc levels, NF-kB activity is downregulated and pro-inflammatory response is controlled (Liu, 2013). This doesn’t necessarily mean that zinc is a cure-all, since its paucity will telegraph other mineral insufficiencies, as well. Laboratory animals suffering induced zinc deficiency while being exposed to sepsis have responded with systemic inflammation and subsequent damage to vital organs, resulting in predicted mortality. In these instances NF-kB was overexpressed, appearing especially active in the respiratory system. Zinc supplementation administered immediately prior to the initiation of sepsis was able to stave off morbidity and mortality (Bao, 2010).

When a pathogen attacks the body, monocytes are the first line of defense. One job is to awaken the sleeping giant and to get the immunity ball rolling. This is when NF-kB enters the nucleus and unlocks the door so zinc can cross the cell membrane. When the zinc merges with a protein ally, it calms down the NF-kB to prevent runaway inflammation. The balance of activity in this drama is delicate, meaning that more (zinc) is not necessarily better. Even a modest deficiency, though, will invite immune dysfunction and increase the chance for infection from whatever is floating around.  The medical, social and academic venues that host crowds of people, such as hospitals, churches and schools can test your susceptibility, which increases with age by virtue of failure to tend to personal needs for lack of motivation and, perhaps, wherewithal.

Though zinc toxicity can be caused by drinking from galvanized containers, it’s more likely to come from overzealous supplementation or from ingesting multiple sources that contain zinc. That includes food as well as supplements. Abdominal pain, diarrhea, nausea and vomiting are the initial signs of overdose. Chronic excess will interrupt copper metabolism and disrupt a raft of physiological functions that include making red blood cells and myelin, and regulating some gene functions. Adults need only eleven milligrams a day; forty is pushing the envelope. Half-dozen oysters provide more than seventy-five milligrams.  Even denture adhesives contain enough zinc to cause symptoms of toxicity if combined with dietary and supplement sources. Taking zinc with a quinolone or tetracycline antibiotic will reduce the absorption of both the zinc and the drug. This also will happen with some medications used for rheumatoid arthritis.  Nasal sprays containing zinc can cause irreversible loss of smell, which can be dangerous if you can’t detect a gas leak. Being stored throughout the body, zinc is a permanent resident; so once again, it’s a matter of balance.


Bao B, Prasad AS, Beck FW, Snell D, Suneja A, Sarkar FH, Doshi N, Fitzgerald JT, Swerdlow P.
Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients.
Transl Res. 2008 Aug;152(2):67-80.

Bao S, Liu MJ, Lee B, Besecker B, Lai JP, Guttridge DC, Knoell DL.
Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB.
Am J Physiol Lung Cell Mol Physiol. 2010 Jun;298(6):L744-54.

Barceloux DG.
J Toxicol Clin Toxicol. 1999;37(2):279-92.

Besecker BY, Exline MC, Hollyfield J, Phillips G, Disilvestro RA, Wewers MD, Knoell DL.
A comparison of zinc metabolism, inflammation, and disease severity in critically ill infected and noninfected adults early after intensive care unit admission.
Am J Clin Nutr. 2011 Jun;93(6):1356-64.

Freake HC, Govoni KE, Guda K, Huang C, Zinn SA.
Actions and interactions of thyroid hormone and zinc status in growing rats.
J Nutr. 2001 Apr;131(4):1135-41.

Lang C, Murgia C, Leong M, Tan LW, Perozzi G, Knight D, Ruffin R, Zalewski P.
Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation.
Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L577-84.

Liu MJ, Bao S, Gálvez-Peralta M, Pyle CJ, Rudawsky AC, Pavlovicz RE, Killilea DW, Li C, Nebert DW, Wewers MD, Knoell DL.
ZIP8 Regulates Host Defense through Zinc-Mediated Inhibition of NF-κB.
Cell Rep. 2013 Feb 8. pii: S2211-1247(13)00016-8.

Knoell DL, Liu MJ.
Impact of zinc metabolism on innate immune function in the setting of sepsis.
Int J Vitam Nutr Res. 2010 Oct;80(4-5):271-7.

Lang C, Murgia C, Leong M, Tan LW, Perozzi G, Knight D, Ruffin R, Zalewski P.
Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation.
Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L577-84.

O’Dell BL.
Role of zinc in plasma membrane function.
J Nutr. 2000 May;130(5S Suppl):1432S-6S.

Overbeck S, Rink L, Haase H.
Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases.
Arch Immunol Ther Exp (Warsz). 2008 Jan-Feb;56(1):15-30.

Prasad AS.
Zinc: role in immunity, oxidative stress and chronic inflammation.
Curr Opin Clin Nutr Metab Care. 2009 Nov;12(6):646-52. doi: 10.1097/MCO.0b013e3283312956.

Sandström B.
Micronutrient interactions: effects on absorption and bioavailability.
Br J Nutr. 2001 May;85 Suppl 2:S181-5.

Vasto S, Mocchegiani E, Candore G, Listì F, Colonna-Romano G, Lio D, Malavolta M, Giacconi R, Cipriano C, Caruso C.
Inflammation, genes and zinc in ageing and age-related diseases.
Biogerontology. 2006 Oct-Dec;7(5-6):315-27.

Vasto S, Mocchegiani E, Malavolta M, Cuppari I, Listì F, Nuzzo D, Ditta V, Candore G, Caruso C.
Zinc and inflammatory/immune response in aging.
Ann N Y Acad Sci. 2007 Apr;1100:111-22.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Iodine Deficiency

iodinebookBeyond its role in antisepsis and breast health, iodine is perhaps best known for its regulatory function in the thyroid gland. Educators at the Linus Pauling Institute reiterate the mineral’s essentiality to the thyroid hormones, commonly listed as T3 and T4 on a blood test. T3 is the physiologically active form, while T4 is the more abundant circulating form. In targeted tissues, T4 is converted to T3 by enzymes that depend on selenium for their activity. In this manner, the thyroid comes to control growth and development, metabolism, and reproductive function. Can you see the need for selenium? In the absence of sufficient iodine, the pituitary gland will secrete thyroid-stimulating hormone (TSH) in an attempt to set things straight by increasing iodine trapping mechanisms. If TSH levels are persistently elevated, the thyroid gland may enlarge and form what is known as a goiter.

The World Health Organization (WHO) estimates that about a third of the world’s population is deficient in iodine, a deficit that is the most common cause of preventable brain damage in the world. The Food and Nutrition Board of the Institute of Medicine declares that iodine is responsible for myelination of the developing central nervous system, and that deficiency is associated with mental retardation, and in extreme cases, cretinism. More than thirty percent of children under twelve has insufficient iodine intake. Although iodized salt was intended to prevent iodine deficiency, the modern diet has put it away in favor of salts whose iodine values are inconsistent and perhaps even absent, as might be the case with the kosher salts that took over the culinary arts. The American Journal of Hypertension and its Polish counterpart report that those adults who choose to avoid salt in any form to control their sodium-sensitive high blood pressure may be realizing small benefit in the long run unless they fortify their diets with iodine from other sources.

Just as we are barraged with loud TV commercials for products in which we have little or no interest, we are likewise assaulted with chemicals and synthetic agents about which we know nothing and whose ubiquitous presence is hidden. Manufacturers of consumer goods apparently feel the need to add things to their products for our own good when, in truth, it’s for their bottom line. Among these ruinous substances is bromine, a member of the chemical family called halides, a group that includes fluorine, chlorine, iodine and astatine, the last having no biological value whatsoever to humans.  Bromine hides in a few forms—as methyl bromide and ethylene dibromide, used as fumigants. In the produce business, they relieve fresh fruits and vegetables of their B vitamins. Bromide is found in cleaners, dyes, water sanitation processes, pharmaceuticals, flame retardants in our kids’ PJs, and in our foods as brominated flour, brominated vegetable oil (BVO) and who knows what else.  BVO is used to make citrus-flavored soft drinks cloudy-looking by emulsifying ingredients to keep the flavoring suspended in the liquid.  Bromine, which has zero use by the body, pushes iodine out of the thyroid gland. Because it acts like iodine and chlorine, the body accepts it. Puzzlement is that bromine is listed in the Hazardous Substances Data Bank of the National Library of Medicine, yet is allowed as a food additive in the Federal Code. In one of his blog postings, Dr. David Brownstein, a celebrated holistic physician, explains that it is vital to maintain optimal iodine levels. Our constant exposure to chemicals like bromine requires daily iodine supplementation because bromine will either prevent iodine absorption or push out that which is already there. At 150 micrograms a day, the RDA for iodine is woefully inadequate to address our physiological needs.  Knowing that bromine is present in some psychotropic drugs helps us to understand why some patients never get well. They are iodine depleted.

There is little doubt among researchers that iodine deficiency is epidemic. Dr. Mark Sircus acknowledges the toxicity of another halogen—fluoride.  He points out that all the halogens use the same receptors in the body, and that the toxic ones will displace iodine at the first opportunity, but also that the intake of supplemental iodine can increase the excretion of the other halides, and even of heavy metals. Note that the toothpaste tube admonishes us not to let a child swallow his fluoridated dentifrice. Adults, likewise, are warned not to swallow more than used on the brush.  Hailed as one of the greatest health achievements of the 20th century, fluoridation of water is now limited, being cited as harmful to the liver and kidneys.

If you or a loved one is concerned about thyroid function, know that fluoride is used in Europe to treat hyperthyroidism because it reduces thyroid activity. If you have symptoms of hypothyroid—fatigue, sensitivity to cold, constipation, dry skin, puffiness, muscle weakness, thinning hair, slowed heart rate and mental fog—look at your toothpaste, your municipal or well water supply, black tea, pesticides, Teflon, moisture barriers, some drugs, refrigerants, certain medical scanning procedures, and your dentist.

An oddity of halogens is that their clinical activity is in inverse proportion to their atomic weights. A lighter one will displace a heavier one. The opposite does not hold. Of those in the body, iodine is the heaviest. Regular use of iodine will mitigate the damage from the others. Knowing that liquid iodine preparations work more efficiently than the solid forms can help you to make the right supplement choice.


Victoria J. Drake, Ph.D.
Linus Pauling Institute Micronutrient Information Center. Mar 2010. Update

Dunn JT.
What’s happening to our iodine?
J Clin Endocrinol Metab. 1998;83(10):3398-3400.
Fluoride history

Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press, 2002. Available at:

Grzesiuk W, Dabrowska J, Osikowska-Loksztejn M, Kondracka A, Kolasińska K, Bar-Andziak E.
Effectiveness of iodine prophylaxis in hypertensive patients on salt restricted diet
Pol Arch Med Wewn. 2005 Feb;113(2):147-54.

Hetzel BS, Clugston GA. Iodine. In: Shils M, Olson JA, Shike M, Ross AC, eds.
Modern Nutrition in Health and Disease.
9th ed. Baltimore: Williams & Wilkins; 1999:253-264.

Larsen PR, Davies TF, Hay ID. The thyroid gland. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR, eds. Williams Textbook of Endocrinology. 9th ed. Philadelphia: W.B. Saunders Company; 1998:389-515.

R. L. Metcalf . From the “Introduction” to Chapter 7, “Fluorine-containing insecticides”, (Handbook of  Experimental Pharmacol. XX.1, pp. 355-386, Springer, Berlin-Heidelberg-New York, 1966):

Dr. Mark Sircus blogs[email protected]

Santoyo-Sanchez MP, Del Carmen Silva-Lucero M, Arreola-Mendoza L, Barbier OC.
Effects of Acute Sodium Fluoride Exposure on Kidney Function, Water Homeostasis, and Renal Handling of Calcium and Inorganic Phosphate.
Biol Trace Elem Res. 2013 Feb 12. [Epub ahead of print]

Tayie FA, Jourdan K.
Hypertension, dietary salt restriction, and iodine deficiency among adults.
Am J Hypertens. 2010 Oct;23(10):1095-102.

World Health Organization. Eliminating Iodine Deficiency disorders. World Health Organization, [Web page]. 04/09/2003. Accessed 04/11/2003.

Zhao P, Guo X, Zheng C.
Removal of elemental mercury by iodine-modified rice husk ash sorbents.
J Environ Sci (China). 2010;22(10):1629-36.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Supplement Actions & Interactions

spoon-full-of-vitaminsThe potential for vitamin toxicity is real. Most Americans believe that vitamins and other supplements are safe. That’s true if they are used correctly. Too many people still think that if one is good, ten is better. Especially alarming is the scenario in which a well-meaning mother tells her youngster to chew his daily animal-shaped gummy vitamin because it’s good for him and will make him grow to be big and strong, like Daddy.  Junior doesn’t know that ten is not better, climbs up to the counter, struggles to open the bottle, and eats a handful of vitamins. If the vitamins are made from food the worry is minor, but still there. If synthetic, like most, the danger for an adverse reaction is much greater and becomes a medical emergency.  Fat-soluble vitamins have a higher potential for poisoning because they can accumulate in the body, but there is comfort knowing that, even with more than 71,000 vitamin overdose reports to poison control centers in 2010, no one ever died from a vitamin excess (Bronstein, 2011). The actual number is 71,545 out of 2,784,907, representing about 2.5% of all exposures. The medical community that reviewed total toxic exposures ruled vitamins to be safe.

Antioxidants: Vitamin A
Vitamin A is a group of fat-soluble substances called retinoids, including retinol, retinal, retinoic acid and retinyl esters that are involved in immunity, vision, reproduction, and cellular communication. As an essential component of rhodopsin, vitamin A is critical for vision. Since it supports healthy cell growth and division, it is likewise important to the heart, lungs, kidneys, and other organs. This nutrient exists in two forms. Pre-formed vitamin A is called retinol, found mostly in animal foods and converted to the metabolically active forms known as retinal and retinoic acid. The other form of vitamin A is the provitamin carotenoid, beta-carotene, although other carotenes exist as alpha-carotene and beta-cryptoxanthin, all of which are converted to vitamin A and metabolized to retinal and retinoic acid. All forms of the vitamin are made into micelles and are absorbed by the duodenum. In a cascade of metabolic events, retinol is converted to retinal and then to retinoic acid. Much of the vitamin A from food comes as retinol. About one third of the dietary source comes from plants, especially grains, oils, and green and yellow fruits and vegetables, such as carrots and pumpkin.

Because the liver maintains vitamin A levels within a narrow window, overdose is possible by overzealous supplementation, and can be serious in children. But that does not exempt adults from the hazard. Intake of much more than 1.5 milligrams of supplemental A each day (5000 IU), particularly of preformed vitamin A, can backfire and reduce bone mineral density by as much as 10% in the femur and 6% for the total body, thereby increasing risk for hip fractures (Melhus, 1998). But vitamin A precursors are not totally exculpated (Feskanich, 2002). Observational studies on retinol conclude that total vitamin A intake is more important than the source, whether from supplements or from foods, and that twice the current RDA (3000 IU or 900 mcg for adults) is enough to compromise bone integrity (Crandall, 2004). The Brazilians noted an increase in risk of skeletal fractures when intake of dietary vitamin A from retinol was excessive, as bone resorption was stimulated and bone formation inhibited (Genaro, 2004).

Nutrition Labels Have a Purpose
Good intentions are insufficient to ward off the throes of taking too much of a supplement, whether alone or as part of a multi-vitamin or other complex. This is why you need to read labels of all the supplement bottles you open. If each bottle contains a little bit of the same nutrient, you need to add the numbers to arrive at the value you swallow, lest you take too much and possibly suffer harm. Water-soluble nutrients are not usually the problem; fat-soluble ones are. High doses of vitamin A over long periods of time, regardless of source, can antagonize vitamin K and reduce its effectiveness as a clotting agent and cause internal hemorrhage (Grubbs, 1985). Most people don’t monitor vitamin K intake from supplements. Neither do they watch how many green leafy vegetables they eat to account for vitamin K supply. Except for that prescribed by a medical doctor, high doses of vitamin A means taking more than twice the daily recommendation.

Deficiencies of nutrients often parallel one another. Low zinc levels limit the bioavailability of vitamin A, regardless of how much is ingested (Rahman, 2992).  Iron deficiency is a known cause of anemia. In the absence of ample vitamin A stores, even supplemental iron is inhibited despite its enhanced hematological response by vitamin C (Fishman, 2000). Certain foods can inhibit or facilitate supplemental nutrient uptake and absorption, too. In the presence of fiber, vitamin A absorption is enhanced (Kasper, 1979).

Vitamin A and Your Liver
Because vitamin A is handled by the liver, anything that burdens that organ might contribute to problems down the line. Acetaminophen is notorious for causing liver damage, even fatalities, and  amiodarone, carbamazepine, methotrexate, and a slew of other drugs can cause liver concerns in the presence of excess vitamin A. Taking 25,000 IU of vitamin A daily for several months will turn your eyes and skin yellow and, for a pregnant, woman, can cause birth defects (Hathcock, 1990). Mixing vitamin A, often prescribed for acne, with tetracycline antibiotic prescribed for the same condition can cause intracranial hypertension with resultant headaches, nausea and vomiting, as well as pulsate tinnitus and vision symptoms (Walters, 1981). Heaven forbid you take an Rx blood thinner and overdo the vitamin A at levels greater than 10,000 IU a day.  Vitamin K will be antagonized and hemorrhage becomes a possibility (Hardman, 1996).

When it comes to fat-soluble vitamins, be careful not to overdo it. Although toxicity is relatively rare, is it especially possible in the elderly, chronic alcohol users and those with a genetic predisposition to high cholesterol (Russell, 2000). Avoid taking more than the RDA of pre-formed vitamin A (retinol) during pregnancy, being alert to fortification of food and counting it as part of daily intake. Synthetic derivatives, such as those used to treat skin conditions (Accutane, Retin-A) either orally or topically are no less dangerous merely because they come from a pharmacist. The terms “acetate” and “palmitate” describe preformed vitamin A. Although beta-carotene is safer, use common sense.


Alvin C. Bronstein, MD ; Daniel A. Spyker, MD, PhD ; Louis R. Cantilena, Jr, MD, PhD, et al
2010 Annual Report of the American Association of Poison Control Centers ’ National Poison Data System (NPDS): 28th Annual Report
Clinical Toxicology (2011), 49, 910–941

Crandall C.
Vitamin A intake and osteoporosis: a clinical review.
J Womens Health (Larchmt). 2004 Oct;13(8):939-53.

Feskanich D, Singh V, Willett WC, Colditz GA.
Vitamin A intake and hip fractures among postmenopausal women.
JAMA. 2002 Jan 2;287(1):47-54.

Fishman SM, Christian P, West KP.
The role of vitamins in the prevention and control of anaemia.
Public Health Nutr. 2000 Jun;3(2):125-50.

Genaro Pde S, Martini LA.
Vitamin A supplementation and risk of skeletal fracture.
Nutr Rev. 2004 Feb;62(2):65-7.

Grubbs CJ, Hill DL, Farnell DR, Kalin JR, McDonough KC.
Effect of long-term administration of retinoids on rats exposed transplacentally to ethylnitrosourea.
Anticancer Res. 1985 Mar-Apr;5(2):205-9.
Hardman JG, Limbird LL, Molinoff PB, eds. Goodman and Gillman’s The Pharmacological Basis of Therapeutics, 9th ed. New York, NY: McGraw-Hill, 1996.

Hathcock JN.
Metabolic mechanisms of drug-nutrient interactions.
Fed Proc. 1985 Jan;44(1 Pt 1):124-9.

Hathcock JN, Hattan DG, Jenkins MY, McDonald JT, Sundaresan PR, Wilkening VL.
Evaluation of vitamin A toxicity.
Am J Clin Nutr. 1990 Aug;52(2):183-202.

Kasper H, Rabast U, Fassl H, Fehle F.
The effect of dietary fiber on the postprandial serum vitamin A concentration in man.
Am J Clin Nutr. 1979 Sep;32(9):1847-9.

Melhus H, Michaëlsson K, Kindmark A, Bergström R, Holmberg L, Mallmin H, Wolk A, Ljunghall S.
Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture.
Ann Intern Med. 1998 Nov 15;129(10):770-8.

Michaëlsson K, Lithell H, Vessby B, Melhus H.
Serum retinol levels and the risk of fracture.
N Engl J Med. 2003 Jan 23;348(4):287-94.

Allen LH, Peerson JM; Maternal Micronutrient Supplementation Study Group Collaborators (37)
Impact of multiple micronutrient versus iron-folic acid supplements on maternal anemia and micronutrient status in pregnancy.
Food Nutr Bull. 2009 Dec;30(4 Suppl):S527-32

Rahman MM, Wahed MA, Fuchs GJ, Baqui AH, Alvarez JO.
Synergistic effect of zinc and vitamin A on the biochemical indexes of vitamin A nutrition in children.
Am J Clin Nutr. 2002 Jan;75(1):92-8.

Russell RM.
The vitamin A spectrum: from deficiency to toxicity
Am J Clin Nutr. 2000 Apr;71(4):878-84.

Vetrugno M, Maino A, Cardia G, Quaranta GM, Cardia L.
A randomised, double masked, clinical trial of high dose vitamin A and vitamin E supplementation after photorefractive keratectomy.
Br J Ophthalmol. 2001 May;85(5):537-9.

Walters BN, Gubbay SS.
Tetracycline and benign intracranial hypertension: report of five cases.
Br Med J (Clin Res Ed). 1981 Jan 3;282(6257):19-20.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

What’s The Big Deal If My Insulin Spikes?

complex-carbsInsulin is the pancreatic hormone responsible for distributing the carbohydrates you eat in the form of glucose, whose job is to get inside each cell to provide the fuel you need for energy. If the glucose inside a cell is not burned because of inactivity, that which is floating around has no place to go, so it gets into trouble. If it then creates advanced glycation end products*, cells get crystallized like the topping of a crème brulee. That can make cell membranes brittle. If that happens, blood vessels and organs lose resilience and cause problems, such as high blood pressure. Even heart failure can result if the left ventricle stiffens. If carbs don’t get burned, they can get stored as fat because insulin likes to store things. Just like a squirrel, eh? The more insulin you have, the more storage goes on and the more fat builds up. After a while, cells get tired of being teased by insulin, expecting glucose to be escorted in, but frustrated in their anticipation because the old glucose still hasn’t been burned. Now the cells ignore the insulin and become resistant to its serenade. That is the start of type 2 diabetes. A big belly promises big problems. How do you feel about sticking yourself with a needle every day?

*Advanced glycation endproducts—AGE’s—are made when sugars react with proteins or amino acids, without the control of an enzyme, in a process called glycation. This is the equivalent of browning food in a sauté pan or in the oven, and is equally irreversible. When proteins accumulate AGE’s, they do, in fact, turn brown. Because they are cross-linked, the body cannot break them down. As a result, tissues lose tone and resiliency, and destruction begins.

How did this ever happen to me? Probably from simple carbohydrates. You know what they are—foods made from one or two sugars, having very little nutritional value. They’re digested faster than the blink of an eye, and demand immediate burning or they get stored as…well, you know. One-sugar carbs include fructose, galactose and glucose. Two-sugar carbs are lactose, maltose and sucrose (table sugar). Got white flour, honey, milk, candy, chocolate, fruit juice, fruit, jam/jelly, soda, packaged cereal, biscuits or molasses in the pantry?  You’ve got simple carbohydrates. That includes cakes, cookies, doughnuts, pies, and the Pillsbury Doughboy. The fibers, vitamins, minerals and phytonutrients in real, honest-to-goodness fruits bail them out…mostly. But the same can’t be said about juices, especially apple.

How about moderation? How about it? Try giving up wheat—that’s white flour—for a week and see what happens. Replacing white sugar with artificial sweeteners, by the way, might be upsetting the apple cart from another angle. If the brain is fooled into thinking something sweet has been eaten, it’ll still signal insulin to start flowing. At this point, insulin really has nothing to do, so it makes you hungry in order to get some glucose to carry. Now, what? You just took in more calories than you need. They get stored as…well, you know.

Carbohydrates include sugar, starch and fiber, the last not able to be broken apart into simple sugars, so it passes through without being digested. Fibers, both soluble and insoluble, provide no nourishment, but they do promote health. There isn’t much fiber in breads and sweets, but there is in vegetables, legumes and whole grains, the latter associated with increased insulin sensitivity (Liese, 2003) (de Munter, 2007). Restricting carbohydrates in favor of fats and proteins will not only help to control insulin spikes, but also to make your trousers bigger (Foster, 2003) (Samaha, 2003). If you’ve heard about drinking vinegar after a carb-studded repast, you might be interested to know that it seems to help control spikes (Ostman, 2005) (Leeman, 2005), but that’s a topic for another time.


Jeroen S L de Munter, Frank B Hu, Donna Spiegelman, Mary Franz, Rob M van Dam
Whole Grain, Bran, and Germ Intake and Risk of Type 2 Diabetes: A Prospective Cohort Study and Systematic Review
PLoS Med 4(8): e261. 2007

Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS, Szapary PO, Rader DJ, Edman JS, Klein S.
A randomized trial of a low-carbohydrate diet for obesity.
N Engl J Med. 2003 May 22;348(21):2082-90.

Foster-Powell K, Holt SH, Brand-Miller JC.
International table of glycemic index and glycemic load values: 2002.
Am J Clin Nutr. 2002 Jul;76(1):5-56.

Halton TL, Willett WC, Liu S, Manson JE, Albert CM, Rexrode K, Hu FB.
Low-carbohydrate-diet score and the risk of coronary heart disease in women.
N Engl J Med. 2006 Nov 9;355(19):1991-2002.

Johnson LW, Weinstock RS.
The metabolic syndrome: concepts and controversy.
Mayo Clin Proc. 2006 Dec;81(12):1615-20.

Leeman M, Ostman E, Björck I.
Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects.
Eur J Clin Nutr. 2005 Nov;59(11):1266-71.

Liese AD, Roach AK, Sparks KC, Marquart L, D’Agostino RB Jr, Mayer-Davis EJ.
Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study.
Am J Clin Nutr. 2003 Nov;78(5):965-71.

Maki KC, Rains TM, Kaden VN, Raneri KR, Davidson MH.
Effects of a reduced-glycemic-load diet on body weight, body composition, and cardiovascular disease risk markers in overweight and obese adults.
Am J Clin Nutr. 2007 Mar;85(3):724-34.

Ostman E, Granfeldt Y, Persson L, Björck I.
Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects.
Eur J Clin Nutr. 2005 Sep;59(9):983-8.

Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams T, Williams M, Gracely EJ, Stern L.
A low-carbohydrate as compared with a low-fat diet in severe obesity.
N Engl J Med. 2003 May 22;348(21):2074-81.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Vitamin C and Mood

oj-drinking-womanFor a long time, emotions and logical thought have been portrayed as competing processes, with emotions depicted as obstacles to effective decision making. On the other hand, emotions and cognitions might work together to determine our behaviors. Whether or not one controls the other is still a question. If puppy dog eyes can influence a decision or alter a mood, well, “Aw, come on. Please?”  The rigidity of doctrine can be tempered by the plasticity of human thought and behavior, right? If so, a good mood can change outcomes, or at least change the behaviors that affect the outcomes.

Despite their best efforts, even positive people get in bad moods. It could be lack of sleep, or maybe being overworked or overwhelmed. Perhaps there is regret for having done something…or having done nothing. Emotional responses happen so quickly that it becomes a challenge to put a space between feeling and doing. Have you ever snapped at someone for no reason? Or fibbed and said you’re feeling great when you really felt like screaming? Maybe it’s time to figure out what’s standing between you and a smile, and to rewrite the story that precipitated the bad mood. The mood is yours. There’s no need to share it.

Nutritional deficiencies, mostly caused by poor diet, play a part in mood. Junk food equates to junk mood. Edible things devoid of nutritional value, washed down with sweetened, flavored and carbonated distilled water can make you feel depressed, irritable and sick. It’s little wonder that short tempers abound. Recent study has confirmed the importance of micronutrients to the expression of mood, and vitamin C is one of them. Hypovitaminosis is a term that describes vitamin deficiency, though most often associated with vitamin D. It happens when the system is unable to absorb the right amount of vitamins from food or supplements, and results in a number of medical conditions, like scurvy, beriberi, or pellagra, among others.

Vitamin C deficit is not very common in the general population, but does show up in cancer patients and in those with conditions that inhibit absorption. Age, poor diet, medications and obesity are contributing factors. The widowed elderly, for example, often do not eat properly because they don’t cook for themselves. Community settings can make a difference in their nutrient balance.

In acute care situations, as in a short-term hospital stay, hypovitaminosis is more common than one might think, and malnutrition of vitamin C (often accompanied by vitamin D) has been linked to mood disturbances and cognitive upset. In these cases, doses as little as 500 mg twice a day resolved issues with psychological distress and irascible mood (Wang, 2013). Because vitamin C is water-soluble, it needs to be replaced regularly. Most animals can make their own. Humans, apes and guinea pigs cannot. Without it, the body cannot make collagen or the neurotransmitter norepinephrine.

It’s not completely clear if hypovitaminosis C results from outright deficiency or from tissue redistribution as part of the acute-phase response. Investigations stand on both sides of the street (Evans-Olders, 2010). This response is an innate body defense during acute illness and involves the increased production of certain blood proteins, appropriately called acute phase proteins. Once activated, these substances cause the release of inflammatory molecules, the most well known being C-reactive protein (CRP), a marker unexpectedly related to mood disorders in the presence of even low-grade inflammation (DeBerardis, 2006) (Luukinen, 2010). Since CRP is also associated with increased risk of cardiovascular involvement, reducing it is a prudent objective on two fronts. Vitamin C was found to be as effective as statin drugs in lowering CRP levels by more than 25% in a study of individuals whose inflammatory markers put them at risk for a cardiac event (Block, 2009). In patients with active disease, such as cancer, intravenous vitamin C was found to have a salutary effect on CRP and pro-inflammatory cytokines (Mikirova, 2012).

Decrease in blood vitamin concentrations is common to the acute-phase response, but is more common because people fail to get the nutrition they need to maintain optimum health. A glass of orange juice just won’t cut it. Not only are mood and cognitive ability worthy of adequate nutrient intake, but also total physiological function. Supplements have been shown to improve mental processing and response to stress, to reduce fatigue, and even to attenuate psychological and physical damage from noise (Angrini, 2012), including high blood pressure (Fernandes, 2011). Vitamin C now has an identified mechanism of activity beyond that of anti-oxidant. It enhances mood.


Amr M, El-Mogy A, Shams T, Vieira K, Lakhan S
Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: a randomized, double-blind, placebo-controlled pilot study.
Nutr J. 2013 Mar 9;12:31.

Angrini MA, Leslie JC.
Vitamin C attenuates the physiological and behavioural changes induced by long-term exposure to noise.
Behav Pharmacol. 2012 Apr;23(2):119-25.

Baumann H, Gauldie J.
The acute phase response.
Immunol Today. 1994 Feb;15(2):74-80.

Block G, Jensen CD, Dalvi TB, Norkus EP, Hudes M, Crawford PB, Holland N, Fung EB, Schumacher L, Harmatz P.
Vitamin C treatment reduces elevated C-reactive protein.
Free Radic Biol Med. 2009 Jan 1;46(1):70-7.

De Berardis D, Campanella D, Gambi F, La Rovere R, Carano A, Conti CM, Sivestrini C, Serroni N, Piersanti D, Di Giuseppe B, Moschetta FS, Cotellessa C, Fulcheri M, Salerno RM, Ferro FM.
The role of C-reactive protein in mood disorders.
Int J Immunopathol Pharmacol. 2006 Oct-Dec;19(4):721-5.

Evans-Olders R, Eintracht S, Hoffer LJ.
Metabolic origin of hypovitaminosis C in acutely hospitalized patients.
Nutrition. 2010 Nov-Dec;26(11-12):1070-4.

Fain O, Pariés J, Jacquart B, Le Moël G, Kettaneh A, Stirnemann J, Héron C, Sitbon M, Taleb C, Letellier E, Bétari B, Gattegno L, Thomas M.
Hypovitaminosis C in hospitalized patients.
Eur J Intern Med. 2003 Nov;14(7):419-425.

Fernandes PR, Lira FA, Borba VV, Costa MJ, Trombeta IC, Santos Mdo S, Santos Ada C.
Vitamin C restores blood pressure and vasodilator response during mental stress in obese children.
Arq Bras Cardiol. 2011 Jun;96(6):490-7.

Hamer M, Owen G, Kloek J.
The role of functional foods in the psychobiology of health and disease.
Nutr Res Rev. 2005 Jun;18(1):77-88.

David O. Kennedy, Rachel Veasey, Anthony Watson, Fiona Dodd, Emma Jones, Silvia Maggini,
Crystal F. Haskell
Effects of high-dose B vitamin complex with vitamin C and minerals on subjective mood and performance in healthy males
Psychopharmacology. July 2010, Volume 211, Issue 1, pp 55-68,

Lindblad M, Tveden-Nyborg P, Lykkesfeldt J.
Regulation of Vitamin C Homeostasis during Deficiency.
Nutrients. 2013 Jul 25;5(8):2860-79.

Louw JA, Werbeck A, Louw ME, Kotze TJ, Cooper R, Labadarios D.
Blood vitamin concentrations during the acute-phase response.
Crit Care Med. 1992 Jul;20(7):934-41.

Mikirova N, Casciari J, Rogers A, Taylor P.
Effect of high-dose intravenous vitamin C on inflammation in cancer patients.
J Transl Med. 2012 Sep 11;10:189.

William K. Summers, Roy L. Martin, Michael Cunningham, Velda L. DeBoynton, Gary M. Marsh
Complex Antioxidant Blend Improves Memory in Community-Dwelling Seniors
Journal of Alzheimer’s Disease. 2010; 19(2); 429-439

Luukinen H, Jokelainen J, Hedberg P.
The relationships between high-sensitivity C-reactive protein and incident depressed mood among older adults.
Scand J Clin Lab Invest. 2010 Apr;70(2):75-9.

Wang Y, Liu XJ, Robitaille L, Eintracht S, Macnamara E, Hoffer LJ.
Effects of vitamin C and vitamin D administration on mood and distress in acutely hospitalized patients.
Am J Clin Nutr. 2013 Jul 24.

Zhang M, Robitaille L, Eintracht S, Hoffer LJ.
Vitamin C provision improves mood in acutely hospitalized patients.
Nutrition. 2011 May;27(5):530-3.

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.

Is It The Time To Take Your Vitamins?

supplement-timeLots of people take vitamins and minerals without knowing the reason. It might be that a friend recommended them or because “everybody takes vitamins.” Occasionally, a doctor or other credentialed health care practitioner might suggest them. But what is the basis for such a recommendation? One reason is that the food supply is terribly deficient in nutrient content. Vegetables that are picked before reaching maturity so they don’t spoil in storage and shipping offer us only a fraction of what they did a few decades ago. Petroleum-based fertilizers and biocides upset the balance of minerals that we have trusted soil to provide. Another reason for using supplements is that we don’t always eat three squares a day and, even if we think we do, can’t guarantee their squareness. Those of us who live alone often fail to eat anything that even resembles a meal unless we spend time with friends and family, either at their tables or at some eating establishment. Still others of us may be harboring a medical condition or may be taking medications that interfere with nutrient absorption and metabolism. Whatever the case might be, including having more than a few drinks a day, there are legitimate reasons to use vitamin and mineral—and other—supplements.

Vitamins are simply organic compounds needed in small amounts to provide a biological activity that would be missing or haphazard in their absence or deficiency. They are not foods and cannot stand alone as food substitutes. They can, however, help us to get from our food all that the food has to offer by acting as catalysts and co-factors. Many of the health claims for vitamin effectiveness in addressing a particular concern can be proven. Those not substantiated by science should be discounted. Taking a quality multivitamin supplement to prevent or to overcome deficit has been supported by the AMA (Fairfield, 2002), who admonishes, though, to be prudent about taking too much of a good thing.

Minerals, unlike vitamins, play a structural role as well as a functional role in the body. Calcium, magnesium and phosphorus make bone, for example, but they also control electrical circuits and enzyme functions. Magnesium alone is part of more than three hundred enzymes. All these micro-nutrients act like spark plugs to initiate or to facilitate metabolic and physiologic processes, such as releasing energy from carbohydrates and fats. Some minerals are not found in supplement form, like sulfur, which is part of the proteins that make the skin, hair, liver and pancreas. Instead, they exist in amino acids.

Other things you might swallow from a bottle include the essential fatty acids and the phytonutrients found in plants. Common to these are fish oil, flavonoids and other organic compounds that afford physiologic activity. Most of us ignore an important consideration in the supplement regimen—timing. Popping too many tablets or capsules can backfire sooner or later and even present as a condition they’re trying to prevent, but so can taking them at the wrong time of day or in the wrong combination.

Since micro-nutrients work together with the macro-nutrients (proteins, carbs and fats), and since they appear together in foods (when they can), it might just be prudent to take supplements with meals, either during or after. If nothing else, it’ll prevent a belly ache and the exciting laxation that can follow essential fatty acids taken on an empty stomach. Besides, taking any supplement without something in the stomach hastens transit time, which impairs absorption and utilization. Additionally, food stimulates the production of stomach acid, which improves the benefits of the supplements (Mulligan, 2010) (Heaney, 1989) (Kelly, 1984).

Taken with breakfast, multivitamins can spend their time being amply assimilated, but this meal needs to be more substantial than a doughnut and a cup of coffee. Minerals are a bit fussier. Some forms of calcium should be taken with food because a rock-hard mineral refuses to dissolve without stomach acid. The citrate form, though, differs because of the citric acid to which the calcium is tied. Iron absorption peaks in the the presence of vitamin C, which also enhances calcium uptake. Be aware that calcium supplements tend to interfere with assimilation of other minerals, especially iron, magnesium and zinc, even in food. For that reason, taking calcium away from foods might be a prudent move, knowing that the citrate form of calcium will dissolve without stomach acid. Since we can absorb only about 500 milligrams of calcium at a time, spacing intake is important.

In the United States, about a third of prescription drug users also take at least one supplement. This opens the door to possible interactions. Admittedly, most of the allopathic medical community know little or next to nothing about nutrition and the use of supplements. Instead of taking the time and effort to learn about those topics, many practitioners take the easy way out and tell their clientele that supplements are useless. Nonetheless, we need to let our medical people know about supplement intake. If the doctor doesn’t know about drug-supplement interactions, the pharmacist might, the dietitian could, and the integrative/functional dietitian-nutritionist most likely will.

Drug-supplement interaction is a two-way street. A medication may inhibit or enhance the activity of a nutrient, and a nutrient may do the same to a drug. You do not take vitamin A with a tetracycline antibiotic or vitamin C with a blood thinner. Vitamin B1 has the potential to dilate blood vessels, so you might want to keep it away from your blood pressure pills. Supplement-supplement interactions also require attention. Taking vitamin C with grape seed extract may affect blood pressure. You don’t take fish oil with warfarin. Allowing at least a two-hour window between a drug and a supplement is a good idea. With some, four hours is better.

Yes, vitamin, mineral, and herbal supplements have a rightful place in our daily regimens; and yes, herbals could be taken on an empty stomach; and yes, each can support everything the body does and is. If separating doses is a bother, at least take supplements with a meal because fat-soluble vitamins require fat to be assimilated, most need stomach acid to dissolve, and all will be less likely to talk back to you.


Ranjit Kumar Chandraa
Nutrition, immunity, and outcome; Past, present, and future. 11th Gopalan Gold Medal Oration
Nutrition Research. Volume 8, Issue 3, March 1988, Pages 225–237

Domrongkitchaiporn S, Sopassathit W, Stitchantrakul W, Prapaipanich S, Ingsathit A, Rajatanavin R.
Schedule of taking calcium supplement and the risk of nephrolithiasis.
Kidney Int. 2004 May;65(5):1835-41.

Kathleen M. Fairfield, MD, DrPH; Robert H. Fletcher, MD, MSc
Vitamins for Chronic Disease Prevention in Adults
JAMA. 2002;287(23):3116-3126.

Heaney RP, Smith KT, Recker RR, Hinders SM.
Meal effects on calcium absorption.
Am J Clin Nutr. 1989 Feb;49(2):372-6.

Kelly SE, Chawla-Singh K, Sellin JH, Yasillo NJ, Rosenberg IH.
Effect of meal composition on calcium absorption: enhancing effect of carbohydrate polymers.
Gastroenterology. 1984 Sep;87(3):596-600.

Lonn EM, Yusuf S.
Is there a role for antioxidant vitamins in the prevention of cardiovascular diseases? An update on epidemiological and clinical trials data.
Can J Cardiol. 1997 Oct;13(10):957-65.

Mulligan GB, Licata A.
Taking vitamin D with the largest meal improves absorption and results in higher serum levels of 25-hydroxyvitamin D.
J Bone Miner Res. 2010 Apr;25(4):928-30

Prasad KN, Hernandez C, Edwards-Prasad J, Nelson J, Borus T, Robinson WA.
Modification of the effect of tamoxifen, cis-platin, DTIC, and interferon-alpha 2b on human melanoma cells in culture by a mixture of vitamins.
Nutr Cancer. 1994;22(3):233-45.

Prasad KN, Cole WC, Kumar B, Prasad KC.
Scientific rationale for using high-dose multiple micronutrients as an adjunct to standard and experimental cancer therapies.
J Am Coll Nutr. 2001 Oct;20(5 Suppl):450S-463S; discussion 473S-475S.

David L. Watts, D.C., Ph.D., F.A.C.E.P.
Nutrient Interrelationships: Minerals — Vitamins — Endocrines
J of Orthomolecular Med. Vol. 5; 1st Quarter: 1990

*These statements have not been evaluated by the FDA.
These products are not intended to treat, diagnose, cure, or prevent any disease.


Why Vitamins Bulletin

Navigation Menu Items

Is It The Time To Take Your Vitamins?

B Vitamins and Memory

B Vitamins and Energy

Vitamins? Why?